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Abstract

In this thesis we discuss the primordial Universe and prospects for detection of smoking gun

signatures related to the earliest stages of cosmic evolution.

In the first part of this thesis we focus on the epoch of formation of the very first stars and

galaxies when the Universe was only ∼ 30 − 200 million years old. We explore the details of

primordial structure formation taking into account a complete set of initial conditions, which

include fluctuations in density as well as relative velocities between dark matter and baryons at

recombination. We discuss observational prospects related to this era using the redshifted 21-cm

emission line of neutral hydrogen and explore the dependence of this radio signal on the complex

astrophysics of the early epoch as well as on the relative velocities. This research shows that

the prospects for detection of the redshifted 21-cm signal related to the early period are much

more promising than was previously thought. The results presented here are likely to stimulate

observational efforts focused on the epoch of the primordial star formation.

In the second part, we consider cosmological signatures related to a modified set of initial

conditions from inflation, focusing on a particular scenario of pre-inflationary relics which was

originally motivated by string theory. We entertain the possibility that one such a relic may

affect initial conditions for structure formation within our observable Universe, and explore its

observational consequences. This study explores the interface between high energy theories and

cosmic measurements and opens a unique observational window at the high energy scales of

∼ 1016 − 1018 GeV.
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Chapter 1

Introduction

The vast set of cosmological data collected so far leads us to think that we live in a spatially

flat Universe which is undergoing a current stage of accelerated expansion. The model that

fits best the observations is called ΛCDM with a total mass-energy content divided into ∼

4 percent baryonic matter and ∼ 96 percent dark components: dark energy (Λ), which is

responsible for the current acceleration, and non-baryonic Cold Dark Matter (CDM). These

last two components are still a mystery and have an unknown nature. Together with ΛCDM an

elegant mechanism, cosmological inflation, has been proposed to both generate initial conditions

for structure formation on small scales, and explain the average isotropy of the observed sky.

Inflation postulates a short period of exponentially fast growth of all physical scales during

the first ∼ 10−32 seconds of its existence. With these two ingredients (the ΛCDM model and

inflation), the history of the universe is qualitatively described by the Big Bang theory.

Soon after the end of inflation the expansion slows down (distances grow in time with respect

to a power-law dependence rather than exponentially fast). At that time the Universe is filled

with a hot plasma of dense ionized gas tightly coupled to radiation in which standing acoustic

waves form (Baryon Acoustic Oscillations, BAO). As the Universe expands, the plasma cools

and neutral atoms start to form. Radiation then decouples from neutral matter, that becomes

a transparent medium for the photons to stream through, and forms the Cosmic Microwave

Background (CMB). This radiation freely streams through space and time since the moment of

decoupling, preserving a snapshot of the early Universe when it was only 380 thousand years

old. An alternative useful way to measure time flow in cosmology is by using redshift, denoted

by z, which is a parameter that measures how much wavelength is stretched due to the cosmic
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expansion; in these terms, the CMB was released at z ∼ 1100. As soon as baryons decouple

from radiation, they start to fall into evolved potential wells formed by dark matter that was

not supported by the radiation pressure. Perturbations in matter grow slowly, first evolving

linearly in time and later undergoing non-linear collapse. The formation of structure is believed

to be hierarchical with clustering proceeding on small scales first. Eventually, the collapsed

objects become large enough to allow the formation of stars, compact baryonic radiating objects.

Starlight changes the environment dramatically by heating and re-ionizing the gas, leading to

another phase transition referred to as the Epoch of Reionization (EoR), as a result of which

most of the intergalactic gas is hot and ionized today.

The current level of understanding of the history of the Universe is a result of tremendous

improvement of observational techniques and computational capabilities during recent decades.

The present era of “precision cosmology” commenced with the launch of the COsmic Background

Explorer (COBE) satellite by NASA in 1989. The unprecedented data collected by COBE

allowed for the first time to make data-driven conclusions about the origin of the Universe and

to learn about the early phases of the cosmic evolution [1]. The scientific goal of the satellite

was to provide a full-sky map of the temperature of the CMB. COBE measured the spectrum of

the radiation, which appeared to be the most perfect Black Body spectrum found in nature and

which confirms that the Universe was very hot, of temperature∼ 3000 Kelvin, when it was young.

In addition, the relic radiation appeared to be highly isotropic up to one part in 10000. The

tiny deviations from isotropy, better measured by next-generation balloon-born, ground based,

and space telescopes, are a pristine snapshot of the initial conditions inherited from inflation.

Second-generation CMB experiments have further promoted our understanding of the Universe,

mapping the acoustic peaks in the angular power spectrum of the CMB, first discovered by

Balloon Observations Of Millimetric Extragalactic Radiation ANd Geophysics (BOOMERanG)

[2], Millimeter Anisotropy eXperiment IMaging Array (MAXIMA) [3], and Degree Angular

Scale Interferometer (DASI) [4], and confirmed by the Wilkinson Microwave Anisotropy Probe

(WMAP) satellite1, which was launched a decade after COBE, as well as by the ground based

Atacama Cosmology Telescope (ACT) [5, 6] and the South Pole Telescope (SPT) [7, 8] which

reported detection of seven acoustic peaks. A full-sky map of the anisotropies, measured with

0.2 degree resolution by the WMAP satellite, has promoted our knowledge to a new stage.

1http://map.gsfc.nasa.gov/
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The measurements taken by the WMAP satellite have determined to a good precision that the

Universe is 13.74 billion years old today and is flat; imposed severe constraints on the mass-

energy balance showing that only 4.6 percent of the mass-energy today is in baryons, whereas

the rest is in dark matter (23.3 percent) and dark energy (72.1 percent). The data has also

demonstrated that the redshift of reionization, if it was instantaneous, should be z = 10.6 and

that the initial conditions for structure formation were to a good precision a random Gaussian

field, which agrees with the simplest model of inflation driven by a single scalar field [9]. The

next-generation Planck2 satellite is currently acquiring data, aiming to impose severe constraints

on the polarization and Gaussianity of the CMB, two ingredients which would allow us to better

test the inflationary paradigm, for instance by placing indirect constraints on the gravitational

waves from inflation. In addition, precision measurements by Planck will tell us more about

the way the Universe evolved from a rather simple state after the Big Bang to the complex

ambient filled with non-linear structure which we observe today, and which affects the CMB by

imprinting secondary anisotropies at low redshifts. Planck is also aiming to search for “defects”

in space, which may be an indication of exotic processes or hint on the origin of the Universe,

some of which we consider in this thesis.

In addition to the CMB, large scale structure surveys which map the galaxy distribution are

another valuable source of cosmological information, which provides a test of the ΛCDM model

at low redshifts, well after the EoR. These data contain a wealth of information regarding the

gravitational collapse and structure formation at low redshifts, as well as about the distribution

and properties of the luminous objects today. The distribution of the structure on large scales

shows the same BAO as in the CMB, as was detected by the Sloan Digital Sky Survey (SDSS) [10]

in the distribution of luminous red galaxies at z = 0.2 and z = 0.35 and by WiggleZ in the

galaxy clustering pattern at z ∼ 0.6 [11]. Direct observations of large scale structure are limited

and go only as far as redshift z ∼ 10 [12] due to the lack of bright enough sources at high

redshifts. Future instruments such as the Giant Magellan Telescope3 (GMT), the Thirty Meter

Telescope4 (TMT), and the European Extremely Large Telescope5 (E-ELT) will be able to detect

farther galaxies at redshifts higher than z = 10, the Atacama Large Millimeter/submillimeter

2http://www.esa.int/SPECIALS/Planck/index.html
3http://www.gmto.org/
4http://www.tmt.org/news-center/thirty-meter-telescope-international-collaboration
5http://www.eso.org/public/teles-instr/e-elt.html
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Array6 (ALMA), which is currently under construction, will observe molecular gas at z ∼ 8 −

10. Moreover, there are also plans to launch space telescopes such as the James Webb Space

Telescope7 (JWST) aiming to measure first galaxies at z ∼ 10 − 15. An additional useful

cosmological probe is gravitational lensing, which is sensitive to the total projected matter

distribution (only ∼ 16% of which appears to be baryonic) along the line of sight between

a bright source and the observer. The recent expansion history of the Universe can also be

tested using observations of our cosmic neighbourhood. Interestingly enough, the present day

expansion is accelerated (like during inflation!), a behaviour first detected in 1998 using the

Type Ia supernovae data [13], and later confirmed by WMAP data.

Unfortunately, the discussed experiments do not entirely map the observable Universe, leav-

ing most of the volume within our light cone unseen. There is a gap between the moment of

decoupling of the CMB and the domain of the large scale structure surveys which is not acces-

sible by the methods outlined above. Thus the intermediate range of redshifts (z ∼ 15− 1100)

remains poorly constrained, and (although it succeeds in describing all current cosmological data

sets) the validity of the ΛCDM model during this era remains untested. In addition, there are

many aspects of the Universe which we observe that have not been constrained by observations

at hand. For instance, the fundamental questions of the origin of the Universe and nature of

dark matter and dark energy which remain open today. Moreover, we know very little about the

EoR, the scenarios for structure formation at high redshifts, the character of the first black holes,

stars and ionizing sources, and the way the radiation of the first stars affected the Inter-Galactic

Medium (IGM), etc.

Luckily enough, mapping the matter distribution at redshifts 10 < z < 200 will probably

be possible in the future due to the atomic properties of neutral hydrogen, the most abundant

element at that epoch. Photons with a wavelength of 21-cm, emitted as a result of the spin-flip

transition of hydrogen atoms, have a vanishing optical depth and can travel long distances with-

out being absorbed (similar to the CMB photons). This property allows us to detect today the

radiation from the pre-reionization epoch. The intensity of the 21-cm emission of a hydrogen

cloud, back-illuminated by the CMB, depends on the cosmology and on the astrophysical pro-

cesses at the redshift of the cloud. Thus, mapping the intensity from a wide range of redshifts

6http://www.almaobservatory.org/
7http://www.jwst.nasa.gov/
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can give us a clear three-dimensional picture of the distribution of neutral hydrogen at high

redshift, which traces the total matter distribution when large enough scales are considered.

The use of the 21-cm line in astrophysics was first proposed by van de Hulst in 1942 [14],

and first detected by Ewen and Purcell in 1951 [15], who observed the 21-cm emission from

neutral hydrogen clouds in our galaxy. At present a significant effort is dedicated to pushing the

observational frontier further, aiming to collect observations from the EoR (from z ∼ 6− 10) as

the emission of neutral hydrogen directly probes the ionization history. These observations are

extremely challenging due to the strong foreground noise in radio of both astrophysical origin

and from terrestrial sources which are as strong as 105 − 109 times the signal, thus presenting

a real challenge for the observers. Luckily the noises can for the most part be filtered and the

signal cleaned, revealing the cosmological signal. Present state of the art radio experiments

designed to observe the redshifted 21-cm signal are still in the phase of their first measurements.

For instance, the LOw Frequency ARray8 (LOFAR), the Murchison Widefield Array 9 (MWA),

the Giant Meterwave Radio Telescope10 (GMRT), the Probe of the Epoch of Reionization11

(PAPER), the Primeval Structure Telescope12 (PaST) etc., are at an early stages of calibration,

planning and developing methods and techniques for the efficient data processing and mining for

the cosmological data. Although the only scientific conclusions reached so far are by Bowman

and Rogers, with the Experiment to Detect the Global Epoch of Reionization (EDGES), which

reported an all-sky spectrum in the range 6 < z < 13 for the 21-cm signal [16] excluding an

abrupt reionization (of ∆z < 0.06) at 95 percent confidence level, the prospects for this field

are very promising. Despite the challenges, an effort is being made to push the observational

frontier to earlier and earlier times hoping to observe the pre-reionization epoch in future decades.

For instance the Dark Ages Radio Explorer (DARE) [17], Square Kilometer Array (SKA) [18]

and Large-aperture Experiment to detect the Dark Ages13 (LEDA) will probably observe the

Universe before the EoR (at redshifts z ∼ 10− 30).

If retrieved from the radio signal, the cosmological data would provide a three-dimensional

probe of the distribution of neutral hydrogen. These data from high redshifts would provide

8http://www.lofar.org/
9http://www.mwatelescope.org/

10http://gmrt.ncra.tifr.res.in/
11http://eor.berkeley.edu/
12http://web.phys.cmu.edu/ past/
13http://www.cfa.harvard.edu/LEDA/
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a pristine probe of the initial conditions from inflation at scales below the scales of the CMB.

Among other merits of the redshifted 21-cm signal are the ability to constrain non-Gaussianity,

determine neutrino masses, probe the EoR and the epoch of “Dark ages” before the primordial

star formation. It would also constrain scenarios for structure formation at high redshifts, reveal

the character of the ionizing sources and determine the way the radiation of the first stars affected

the IGM. In addition, the three-dimensional mapping of the distribution of neutral hydrogen

would probe clustering properties of matter, verifying the validity of the ΛCDM model at high

redshifts. As a consequence, the properties of dark matter and dark energy at high redshifts

would also be tested, thus constraining models of early dark energy, modified gravity, coupled

dark energy and dark matter, etc. Moreover, some setups of string theory may have testable

cosmological signatures that could be constrained through observations at high redshifts.

Unfortunately, it will be challenging to understand the upcoming observations, since little is

known with certainty about the noise components, and to learn about the cosmological 21-cm

signal. Moreover, the parameter space, related to the early Universe, is poorly constrained as

well as the expected neutral hydrogen signal from high redshifts. To better understand the

expected signal, more refined theoretical predictions are required. For instance, we need to

provide a deeper understanding of the thermal evolution of the Universe and the evolution of

the neutral fraction (amount of neutral versus ionized gas) during the first billion years, i.e.

before the EoR was completed.

The cosmological radio signal is observed with the CMB as an all-sky bright source. Emission

and absorption of the λH = 21 cm wavelength by hydrogen atoms from the background radiation

deforms the initial Black Body spectrum of the CMB at the wavelength λo = λH(1 + zH) cm,

where zH is the redshift of the hydrogen cloud. The cloud emits 21-cm photons if the effective

temperature of the spin-flip transition (called the spin temperature, TS) is hotter than the CMB,

leading to an increment in the measured spectrum at the wavelength λo with respect to the initial

Black Body. On the other hand, if the spin temperature is colder than that of the CMB, the

cloud absorbs, leading to a trough in the observed spectrum at the corresponding wavelength.

According to the present understanding, the main features of the global expected signal are:

1. The redshifted 21-cm signal from very early epochs at z > 200 vanishes due to thermal

coupling of the gas to the CMB.
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2. After the gas thermally decouples from the CMB it cools adiabatically, due to the cosmic

expansion, at a rate which is faster than that of the radiation. The excitation temperature

of the 21-cm line at this epoch is driven to the temperature of the gas, TK , by the hydrogen-

hydrogen collisions. Since the the gas is now colder than the radiation, the observed signal

from this epoch would be seen in absorption.

3. When the gas rarefies enough to make the collisional coupling inefficient, the spin tem-

perature arrives at thermal equilibrium with the CMB again so that the global signal

vanishes.

4. After the first stars start to shine, the starlight couples TS to TK via emission and reab-

sorption of Lyα photons. At first, the gas is colder than the CMB and the signal is seen

in absorption. However soon X-rays from star bursts heat the gas above the temperature

of the CMB so that the 21-cm signal is seen in emission.

Needless to say, the exact timing of the transitions in regime (4) is still not determined and

depends on many unconstrained astrophysical phenomena and model parameters. For instance,

the heating mechanism and the power spectrum of the first heating sources are both very model-

dependent, as are the masses of the first stars, star formation efficiency, stellar luminosity, and

efficiency of the negative feedback to star formation by ultra-violet photons.

Naturally, the 21-cm background is not homogeneous and there are large scale spatial fluc-

tuations in the intensity of the neutral hydrogen emission. Fluctuations in the signal depend

on many environmental aspects such as the initial conditions for structure formation, local gas

temperature, intensity of radiative backgrounds which couple to the 21-cm signal, and the fluc-

tuations in the neutral fraction. Measurement of the fluctuations in the 21-cm background is the

primary goal of the present radio telescopes since the fluctuations change rapidly with redshift

and can be more easily detected than the global spectrum on top of the smooth noise. The

power spectrum of the 21-cm radiation is still very unconstrained and is a subject of current

research. It is one of the main subjects of this thesis.

This work is dedicated to the exploration of our young Universe and covers a wide range of

topics from initial perturbations from inflation to the properties of the redshifted 21-cm signal.

In particular we focus on two different subjects related to cosmology and astrophysics of the

primordial Universe. First, we explore the epoch of the primordial star formation and model
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the expected redshifted 21-cm signal from this epoch. As we show in this thesis, observational

prospects for detection of the redshifted 21-cm signal in coming decades are very promising. The

second objective of this work is to make predictions for cosmological imprints of high energy

theories, such as string theory. This research can shed some light on the origin of our Universe,

being a unique test of physics at very high energy scales. We examine a particular set of initial

conditions from inflation, originally motivated by string theory, which naturally includes the

theory of quantum gravity, and explore its signature in cosmological observables. Detecting any

hints of this exotic type of initial conditions would bring us to a deeper understanding of our

cosmic origins.

Chapter 2 of this thesis is introductory and consists of theoretical background. There we

very briefly review the ideas and important definitions of inflation, structure formation, CMB,

21-cm signal and the thermal history of the Universe.

Chapters 3 and 4 are dedicated to the primordial population of stars and redshifted 21-cm

signal. Interestingly enough, the amount of stars formed in each region of the sky depends not

only on the initial density perturbations, but also on the velocity offset of the baryons with

respect to the motion of dark matter halos. These velocities, previously ignored in the litera-

ture, are supersonic right after recombination and significantly affect the primordial structure

formation and star formation. The importance of the relative velocities was only recently noted

by Tseliakhovich and Hirata in 2010 and reported in [19] where the authors showed that the

velocities had a strong impact on matter perturbations at small scales (M ∼ 104M⊙ − 107M⊙)

and at high redshifts (z ∼ 40), which is exactly the regime relevant for the primordial star for-

mation. After this paper, other works in the field [20–26], focused on clustering, star formation,

and the distribution of stars at high redshifts, showed that the relative velocities significantly

suppress star formation in light halos in an inhomogeneous way, imprinting BAOs in the dis-

tribution of stars. As a result, the first population of stars as well as their radiation and the

resulting redshifted 21-cm background were strongly clustered due to both the scale-dependent

bias by relative velocities [19] and to the bias by large scale density fluctuations [27]. Chapter 3

is dedicated to the effect of the relative velocities on the first population of stars [24], whereas

in Chapter 4 we discuss the signature of the first stars in the redshifted 21-cm signal [28–30].

In the results presented in this thesis we also consider the effect of complex astrophysics at

high redshifts on this signal. In order to study the power spectrum of the 21-cm signal at
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large scales we need to simultaneously implement non-linear small scales at which stars form

and large cosmological scales (≫ 100 Mpc) which characterize distribution of first stars. This

task is impossible to do in fully nonlinear simulations. In the following we make use of hybrid

computational methods to estimate the power spectrum and to follow the mutual evolution in

time of the stellar fraction, radiative backgrounds, and the 21-cm signal. This simulation allows

us to determine the relative timing of the crucial events in the evolution history of our model

universe.

Chapter 5 of this thesis is motivated by searches for the imprints of string theory on the sky.

Despite the advances in observational cosmology as well as in particle physics, the laws of physics

on scales smaller than Planck scale remain a mystery. As a result, we do not understand the

origin of our Universe. Every available cosmological theory, based on classical gravity, is forced to

postulate a macroscopic universe to start with, where classical gravity still applies. Because the

theory of gravity that we have at the moment fails to describe the observable Universe at its first

stages of existence, what we see today cannot yet be derived from the laws of physics, as we know

them, starting from first principles. A quantum theory of gravity is needed to explain certain

processes that happen at quantum scales in cosmology. Unfortunately, such theories (e.g., string

theory in which quantum gravity is naturally included) are hard to check against experiments.

Interestingly enough, cosmological observations may provide an exclusive probe of physics in

the ultraviolet limit using the largest cosmological scales available today, due to properties of

inflation which we discuss in the following. In fact, the very high energy domain, characteristic

for the pre-inflationary world and the beginning of inflation, can be probed by looking at the

largest cosmological scales that re-enter the horizon today. Interestingly enough, we may be able

to put constraints on the UV-limit of the high-energy theories using cosmological observations

due to a peculiar property of inflation: according to the standard picture of inflation the scales

which leave the causal horizon first (and re-enter last, i.e. today) probe the most energetic

state of the Universe, while scales which leave the horizon later probe the Universe which has

already been expanded due to inflation and thus has lower characteristic energy. Thus, the

largest cosmological scales today connect to the most energetic state of the primordial Universe.

This exclusive property converts the cosmos to a unique laboratory where scales of the order of

1016−1018 GeV can be probed, an unreachable range for ground-based accelerator experiments.

Being able to test such high energies may allow us to probe the regime of quantum gravity
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and cherish a hope to detect predictions of string theory on the sky. If any imprints of string

theory were detected, it would be a tremendous breakthrough, which would impose constraints

on quantum gravity and bring us closer to a more complete understanding of nature.

In this thesis we discuss our results (published in [31] and [32]) which focus on cosmological

imprints of a particular realization of inflation in string theory. In addition to the inflaton,

the scalar field which drives inflation, we consider a single massive particle and search for its

cosmological signature. Such heavy degrees of freedom arise naturally in string theory as well

as in other high energy theories, e.g., they can be produced thermally in the earliest stages of

inflation. These massive particles then dilute exponentially fast during inflation and therefore

are expected to be extremely rare today. However, it is still interesting to understand the

cosmological signature of such an object due to the unique opportunity to probe the regime of

quantum gravity. In Chapter 5 we discuss this topic, studying the signature of such a relic in

the CMB and the large scale structure.
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Chapter 2

Theoretical Background

We begin by providing an essential introduction and overview of the aspects of modern cosmology

involved in this thesis. This chapter is intended to provide readers with a common background

and notations, necessary for understanding the following discussion. We start with basic cosmo-

logical definitions in section 2.1. Next, we outline the mechanism of structure formation from

the epoch of inflation, when initial conditions were set and from which all the observed structure

evolved, and we also discuss scenarios for linear and non-linear regimes of structure formation in

section 2.2. We then briefly summarize CMB physics in section 2.3, which includes primary and

secondary anisotropies in the background radiation. Finally in section 2.4, we discuss aspects of

the high-redshift Universe including the details of expected 21-cm background and the thermal

history of the Universe. In sections 2.1, 2.2 and 2.3 we adopt units in which ~ = c = kB = 1,

conventional in cosmology; whereas in section 2.4, which is at the border between cosmology

and astrophysics, it will be more convenient to work in units in which ~, c, kB have physical

meaning.

2.1 The Smooth Universe

As was discussed above, the observed Universe is spatially flat, isotropic and filled mainly with

dark matter and dark energy (cosmological constant, Λ) and baryons. The physical distance

between two events in space-time evolves in accordance to the Friedmann-Lamaitre-Robertson-

Walker metric gµν = (−1, a(t), a(t), a(t)) which obeys the symmetries of the observed Universe

(homogeneity and isotropy). With this metric, the invariant distance element ds2 is defined as
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follows

ds2 ≡ gµνdx
µdxν = −dt2 + a(t)2δijdx

idxj , (2.1.1)

where gµν is the metric tensor, t is the physical time, xi are the “comoving” coordinates of a

point in space (this coordinate system is fixed in time) and a(t) is the scale factor, which relates

the physical and comoving distances rp = a(t)rc. A parallel definition is that of redshift z,

which we already defined in the Introduction, and which is given in terms of the scale factor by

z = a−1 − 1.

The evolution of the scale factor in time can be found by solving Einstein’s equations (details

of which we omit here, see e.g. [33] for a thorough discussion), that can be solved once an equation

of state relating pressure and energy density is given. In particular when solutions are sought

for a multi component perfect fluid as in the ΛCDM model, the scale factor mainly depends on

the dominating component at each time when such a configuration happens. We summarize the

dependence of the energy density on the scale factor, and of the scale factor on time in table

2.1.

Matter Radiation Λ

P/ρ 0 1/3 −1
Ω ≡ ρ/ρcr Ωma

−3 Ωra
−4 ΩΛ

a(t) ∝ t2/3 t1/2 e
t
√

Λ
3

Table 2.1: For each component we list the equation of state P/ρ, the normal-
ized energy density Ω, where we have normalized with respect to the critical

density today ρcr ≡ 3H2
0

8πG ∼ 10−29 g cm−3 (where G is Newton’s constant),
and the scale factor a(t) as a function of physical time t.

To quantify the change in the scale factor it is useful to define the Hubble rate

H(t) ≡ da/dt

a
= H0

(
ρ(t)

ρcr

)1/2

, (2.1.2)

where H0 ∼ 70 km sec−1Mpc−1 is the Hubble constant today. The above equation depends

on the total energy density at a given time ρ(t) = ρm(t) + ρr(t) + ρΛ, where the total matter

density ρm is composed of cold dark matter ρcdm and baryons ρb, ρr is the energy density of

the relativistic degrees of freedom, and ρΛ is the energy density of dark matter. The total

energy density in the above equation is normalized by the critical density ρcr, which is needed
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to assure that the Universe is flat in accordance with observations. The relative contribution

of a component i to the total energy density Ωi is defined via the ratio of the density ρi today

to the critical density and is Ωm = 0.279 for matter (which consists of baryons, Ωb = 0.046,

and dark matter Ωm = 0.233), ΩΛ = 0.721 [9]. According to the ΛCDM model, relativistic

degrees of freedom (such as radiation) do not play any decisive role in the dynamics of the

Universe today and contribute only Ωr = 0.84× 10−4 to the total energy density, but were the

main component determining the expansion rate right after the end of cosmological inflation

(which we discuss in section 2.2). Rewriting eq. 2.1.2 in a more convenient form H(t) =

H0

(
ΩΛ +Ωma

−3 +Ωra
−4

)1/2
and integrating it over time gives the comoving distance between

an observer (located at the center of the coordinate systerm) and a source at redshift z:

rc =

∫ z

0

dz′

H(z′)
. (2.1.3)

A useful quantity, related to the Hubble rate, is the comoving Hubble radius (aH)−1 which is

roughly the distance which particles can travel while the scale factor doubles (one expansion

time). The Hubble radius is a way to define if particles are causally connected or not. Roughly

speaking, if two particles are separated by a distance larger then (aH)−1 they cannot currently

communicate. This is slightly different from the definition of comoving horizon, η =
∫∞
z

dz′

H(z′) .

In this case, if two particles are separated by a distance larger than η today they never could

have communicated in past.

This theory describes an expanding Universe with homogenous energy density components

ρm (which includes cold dark matter and baryons), radiation ρr and dark energy ρΛ. Despite

the great success of this model, there remain two important aspects that it cannot explain, and

these are (1) failing to explain why the temperature of the CMB is isotropic to such a high

degree even in regions that were causally disconnected at the time of recombination, and (2)

not possessing a framework to generate initial conditions for structure formation. Luckily we

do have an elegant theory, outlined in the next section, which both explains the isotropy of the

radiation and provides a mechanism to create initial conditions for structure formation.
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2.2 Inflation and Structure Formation

First proposed by A. Guth in 1981, the theory of inflation postulates a short phase of accelerated

(almost exponentially fast) expansion which terminates when the Universe was only ∼ 10−32

second old. Such an accelerated expansion phase has the power to solve both problems mentioned

above. In fact, during inflation, physical scales grown by at least ∼ 1026 (60 e-foldings1, e.g. [33])

which is necessary to provide initial condition for structure on all observable scales. As a result,

the entire observable volume, which is ∼ (104Mpc)3 today, was within a microscopic causally

connected region before the beginning of inflation, explaining the almost uniform temperature

of the CMB. It also means that we must describe this epoch using quantum field theory. In

particular, we must account not only for the classical motion of particles but also for quantum

fluctuations in each field. In fact, as we show later, it was these tiny fluctuations that served as

initial conditions for the formation of stars, galaxies and clusters of galaxies today.

In order to achieve the accelerated expansion, the energy density of the Universe should

be dominated by a component with “negative” pressure (P < −ρ/3). Negative pressure is

considered exotic from our point of view, as the only example of it found in nature is the

mysterious dark energy. In its simplest version, inflation is driven by a single scalar field (called

the inflaton and denoted by ϕ), and the accelerated expansion happens when the scalar field

slowly rolls down its potential V (ϕ). In this case, the kinetic energy of the scalar field, (dϕ/dt)2/2,

is negligible, and thus the pressure, P = (dϕ/dt)2/2−V (ϕ), is negative and almost equals minus

the energy density, ρ = (dϕ/dt)2/2 + V (ϕ).

The evolution of the vacuum expectation value of the inflaton is derived from the action for

a scalar field

Sϕ =

∫
d4x [gµν∂

muϕ∂νϕ− V (ϕ)] (2.2.4)

and is in accordance with the Klein-Gordon equation for a scalar field in expanding background:

ϕ̈+ 3Hϕ̇+
dV (ϕ)

dϕ
= 0. (2.2.5)

Current observations are able to pose only very weak constraints on the inflaton potential V (ϕ):

first, the amplitude of the quantum fluctuations should be consistent with the initial power

1The number of e-foldings N is defined in terms of the ratio between the scale factor at the end of inflation to
its value at the beginning a(tend)/a(tbeginning) = eN .
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spectrum, probed by the large scales of the CMB; second, the potential should be flat enough to

allow sufficient expansion and to create fluctuations on all observable scales; and third, no tensor

perturbations (gravitational waves from inflation) has been observed. The first condition gives

the following constraint on the potential V
3/2

V ′ = 5.169 ·10−4, first obtained from the observations

of the COBE satellite and sometimes referred to as the COBE normalization [34]. The second

and the third conditions can put additional limits on the scale of inflation and on the second and

third derivatives of its potential. However, these constrains are still very mild and the inflaton

potential appears to be very model-dependent.

During inflation the comoving Hubble radius decreases, which means that fixed (comoving)

scales which were initially in causal contact become disconnected in the course of inflation. As a

result, quantum fluctuations of the inflaton field at a comoving wavenumber k Mpc−1, created at

the beginning of inflation when the fluctuations were deep within the Hubble radius (k >> aH),

leave the causally connected patch when k = aH and freeze as soon as the wavelengths of the

perturbations exceed the Hubble radius (k < aH). After inflation ends, the inflaton decays to

(eventually) Standard Model particles, and the cosmic expansion is governed first by radiation

(until z ∼ 3273 [9]), then by matter (until z ∼ 1) and finally by dark energy. During the first

two stages the comoving Hubble radius aH grows with time and modes gradually re-enter the

Hubble sphere (when k = aH again); whereas during the most recent phase dark energy acts

in a similar way to the inflaton field accelerating cosmic expansion, and the modes leave the

horizon again. As soon as a mode re-enters the causally connected region, the perturbation

starts to evolve again. However, now the physical wavelength of this fluctuation is macroscopic,

and so its evolution is classical.

We first consider the quantum perturbations laying deep within the Hubble radius. If during

inflation there is only one dynamically relevant field with no interaction terms (as in the simplest

scenario), the quantum fluctuations in this field, denoted by δϕ, obey Gaussian statistics, and

each mode evolves separately with a vanishing vacuum expectation value, < δϕ >= 0, and

non-vanishing power spectrum

< δϕ†k1δϕk2 >= (2π)3Pδϕ(k1)δ
3(k1 − k2),

where Pδϕ(k) is the power of the mode k of the perturbation.
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For a complete treatment of perturbations, we also need to account for vector and tensor

modes, and in particular we need to perturb the metric (note that eq. 2.1.1 only describes a

smooth universe without fluctuations) and solve the full set of Einstein’s equations which couple

space and time to energy and momentum. Here we only highlight the method for finding initial

conditions for structure formation and refer the reader to [33] for a detailed discussion.

Naturally, the representation of perturbations depends on the choice of the coordinate system

(the perturbations are gauge-dependent). When treating scalar perturbations during the slow-

roll phase, the spatially flat slicing gauge appears to be the most convenient one [35]. In this

gauge the metric is parameterized so that its spatial part is flat:

ds2 = −(1 +A)2dt2 + 2a(t)B,idx
idt+ a(t)2δijdx

idxj , (2.2.6)

where A and B are the perturbations; the former can be found from Einstein’s equations:

A =
ϕ̇

2H
δϕ, (2.2.7)

whereas the latter does not couple to the inflaton. In the spatially flat slicing gauge the pertur-

bations of the inflaton satisfy the following linearized equation of motion

δ̈ϕ+ 3H ˙δϕ− 1

a(t)2
∇2δϕ = 0, (2.2.8)

which is exact in the slow-roll regime (and does not ignore the coupling between the inflaton and

the curvature perturbation as is the case in the Newtonian conformal gauge [35]), the key feature

of this gauge. By quantizing the perturbations in the standard way and solving a corresponding

equation for the amplitude of each mode, we can find the power spectrum of the perturbations

< δϕ†kδϕk >=
H2

2k3

∣∣∣∣
k=aH

.

This is the power stored in the perturbation when it freezes, leaving the causal patch.

The super-horizon evolution is easy to calculate, since when the scale is outside the Hubble

sphere, the perturbation does not evolve. Luckily, there exists a gauge-invariant parameter which

is conserved on super-horizon scales, ξ(k) ≡ −H
ϕ̇
δϕ(k)−Ψ, which is used to relate perturbations
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in the inflaton to post-inflationary quantities (e.g., the perturbation in gravitational potential

on the same comoving scale). In the spatially flat slicing gauge Ψ = 0, since it is a perturbation

in the space-space part of the metric eq. 2.2.6, therefore the conserved quantity at the end of

inflation reads ξ(k) = −H
ϕ̇
δϕ(k).

After inflation ends, it is more convenient to switch to the Newtonian conformal gauge

ds2 = −(1 + 2Φ)dt2 + a(t)2(1− 2Φ)dxidxjδij , (2.2.9)

where Φ is the Newtonian gravitational potential. Using the gauge invariant conserved parameter

ξ(k) we can calculate the initial value of Φ at each wavelength at the moment when k = aH

Φ0(k) = −2

3
ξ(k) =

2

3

(
H

ϕ̇
δϕ

)
k=aH

. (2.2.10)

As soon as a mode re-enters the causal patch, it starts to evolve with time, first linearly and then

non-linearly when the perturbations become large enough and the linear theory breaks down.

In the framework of the ΛCDM theory, the linear evolution of the gravitational potential is

relatively simple: in fact we can separate the scale-invariant time evolution at late times from

the early scale-dependent evolution during the radiation-dominated era. The scale-dependent

evolution is encoded in the transfer function T (k). The power of a mode k which re-enters

during the radiation-dominated epoch is suppressed as T (k) = (keq/k)
2 at small scales, k >>

keq = 0.073 Mpc−1h2Ωm due to the fact that perturbations in the gravitational potential decay

during the radiation era. On the other hand, at larger scales k << keq the evolution is scale-

invariant, so that T (k) = 1. The late time evolution is described by the linear growth function

D(z) = 5
2Ωm

H(z)
H0

∫∞
z

1+z′

(H(z′)/H0)3
dz′. As a result, the gravitational potential at any redshift is

given by

Φ(k, z) =
9

10
Φ0(k)T (k)D(z)(1 + z). (2.2.11)

The gravitational potential itself cannot be observed, however it is related to various observ-

able quantities, such as perturbations in the local energy density and distortions of the Hubble

flow (i.e., peculiar velocities). In the linear theory, the energy density contrast δ(z, r) ≡ ρ−ρ̄
ρ̄ , as

well as linear flows (peculiar velocities) v⃗(z, r), are generated by the perturbations in gravita-
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tional potential as follows

δ(z, r) =
∇2Φ(z, r)

4πGρm(1 + z)
and v⃗(z, r) = −2H(z)f(z)∇⃗Φ(z, r⃗)

3(1 + z)2H2
0Ωm

, (2.2.12)

where f(z) ≡ − d lnD
d ln(1+z) is the logarithmic growth rate. (Note that because of the derivative

terms, the bulk flow is a better trace of the potential on the largest scales than the energy-

density distribution.) The perturbations in the gravitational potential are also responsible for

the observed CMB anisotropies, as we will discuss in section 2.3.

When the perturbation δ becomes of order unity, the linear theory fails to describe the

growth of structure. In the case of a spherical overdense region of physical radius r and energy

density contrast δ, it is possible to describe the nonlinear collapse analytically. The collapse

of this perturbation is described by the Newtonian equation d2r
dt2

= H2
0ΩΛr − GM

r2
, where M is

the total mass within the overdensity. Two critical points of halo formation are turnaround and

collapse. Turnaround is the moment when the radius reaches its maximal value, which for a halo

that is going to form (virialize) at redshift z always occurs at z′, where 1 + z′ = 1.59(1 + z) (in

the matter dominated era). The second important point is the moment when the top-hat model

collapses to a point. At this moment, if the perturbation would evolve linearly, its overdensity

would reach δL ∼ 1.686. Thus a spherical overdensity is thought to collapse at redshift z if its

extrapolated linear overdensity reaches δcrit(z) = δL/D(z) today. A collapsing halo then reaches

a state of virial equilibrium and by using the virial theorem, which relates the potential energy

at the beginning of collapse to the kinetic energy, we can calculate the radius, mass, and circular

velocity of the formed halo [36].

In addition to discussing properties of an individual halo, it is useful to predict statistical

properties of the population of halos at every redshift, such as the number of halos of a given

mass M . A simple analytical model, which allows the statistical treatment of the population of

halos, is the Press-Schechter theory [37], based on the Gaussian nature of the initial conditions

for structure formation, linear growth and spherical gravitational collapse. Using this model we

can estimate the comoving number density of halos between M and M + dM

dn

dM
=

√
2

π

ρ0
M

−d lnσ
dM

νce
−ν2c /2, (2.2.13)
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where νc = δcrit(z)/σ(M), and σ(M) is the root-mean-square of the smoothed fluctuations on

scale M . However, the Press-Schechter halo abundance fits numerical simulations only roughly.

In this work we use better fits introduced by Sheth and Tormen in [38] and Barkana and Loeb

in [39], where the latter work accounts for the bias of structure formation by large-scale density

modes.

2.3 CMB

The Cosmic Microwave Background radiation has travelled for more than 13 billion years to reach

us. It was released at the moment of recombination of neutral atoms, at redshift z ∼ 1100, and

since then it has suffered almost no scattering processes. As a result, this radiation bears the

imprint of the primordial Universe from the epoch when the Universe was only ∼ 380 thousand

years old. The moment of decoupling is seen by an observer as a two-dimensional shell and is

usually referred to as the surface of last scattering. As was discussed earlier, the CMB radiation

is nearly isotropic and the small fluctuations, with amplitude 10−5 smaller compared to the

average temperature at that epoch, are a direct probe of the primordial perturbations in the

gravitational potential, and thus of the initial conditions from inflation. The mechanism that

imprints anisotropies in the temperature field is a mere gravitational redshift: after decoupling

from the plasma, the photons find themselves in a local over- or under-dense regions and to

climb out of the potential wells they lose or gain energy. These random gravitational redshifts

go under the name of the Sachs-Wolfe effect (SW) [40], and are responsible for the anisotropies

in the observed temperature

δT

T
=

1

3
(Φlss − Φ0), (2.3.14)

where Φlss is the potential at the last scattering surface and Φ0 is the potential at the observer.

An additional source of perturbations in the temperature of the CMB along the line of sight

is the so-called Integrated Sachs-Wolfe effect (ISW), which imprints additional anisotropies in

the CMB temperature field. The anisotropy is a result of the decaying gravitational potential at

low redshifts, which in turn is due to the presence of dark energy. If the gravitational potential

decays during the time of flight of a photon through it, the energy of the photon will be boosted

if its an overdense region, or decreased if its a void. The temperature anisotropy due to this
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effect is given by the relation [41]:

δT ISW (θ)

T
= 2

∫ t0

lss

∂Φ(θ, τ)

∂t
dt. (2.3.15)

Another effect which adds distortions to the CMB is introduced by the structure the signal

has to traverse, via gravitational lensing of the temperature field. Massive objects in fact, bend

the trajectories of the CMB photons on their way from the surface of last scattering to the

observer. Here in this thesis we consider only weak lensing of the CMB, a well studied effect

within the ΛCDM model with the primordial fluctuations generated during inflation [42–45].

The anisotropy due to lensing is sensitive to the total projected mass along the line of sight

(parameterized by r) and is fully characterized by the deflection potential, ψ, which depends on

the gravitational potential Φ

ψ = 2

∫ r0

rLSS

dr
rlss − r

rlss r
Φ. (2.3.16)

The effect of lensing is to redistribute the fluctuations in temperature, without changing the

total brightness, according to Tobs(θ) = T (θ +∇ψ) (which in the weak lensing limit, θ >> ∇ψ,

can be expanded as follows Tobs(θ) = T (θ) + ∇ψ∇T (θ) + ...). The overall effect of the weak

lensing on the power spectrum of the CMB is, thus, to smear the peaks and troughs of the CMB

power spectrum by convolving different scales.

Other sources of CMB anisotropies include: the Sunyaev-Zeldovich effect, reviewed in [46],

the Rees-Sciama effect [47], and the moving halo effect [48], but these effects are somewhat less

significant and their treatment goes beyond the scope of this work.

To analyse the anisotropies in the CMB, it is convenient to expand the observed temperature,

T (θ, ϕ), into spherical harmonics

δT (θ, ϕ)

T
=

∑
l,m

almYlm(θ, ϕ). (2.3.17)

This two-dimensional expansion is convenient to present information stored in the CMB data

which mainly comes from the two-dimensional surface of last scattering. As different (l,m) modes

are expected to be uncorrelated (following the same arguments as for the inflaton perturbations),
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we can define the power spectrum (Cl) in the following way

< almal′m′ >= Clδl−l′δm−m′ . (2.3.18)

Naturally, the expansion coefficients, alm, contain the same information as the original temper-

ature field T (θ, ϕ).

The expansion into spherical harmonics, eq. 2.3.17, is convenient when we consider the entire

sky and is referred to as the full-sky approximation. However, when dealing with the results

of the experiments such as ACT or SPT which have a small field of view and thus observe

only a small portion of the sky, which is nearly flat, it is more convenient to work in the flat-

sky approximation. In this case we can use Fourier series to decompose the signal instead of

using the spherical harmonic functions [42]. The power spectrum of the CMB in the full-sky

approximation, Cl, and in the flat-sky regimes, denoted by C(l), are related as follows

C(l) = Cl, ψ(l) =

√
4π

2l + 1

∑
m

i−mψlme
imϕl . (2.3.19)

In this thesis we will mainly use the full-sky approximation switching to the flat-sky approxi-

mation when talking about the weak lensing of the CMB.

2.4 The High-redshift Universe

A powerful approach in observational cosmology, expected to flourish in the coming decades,

consists in acquiring the three-dimensional mapping of neutral hydrogen (HI) at redshifts z ∼

10−40 using the 21-cm emission line of HI, see section 2.4.1 for details. Due to the present lack of

observations at high redshifts, z ∼ 10− 1000, our understanding of this epoch is very uncertain,

as is the behaviour of the expected 21-cm signal from this era. The expected global 21-cm

emission as well as the fluctuations in this signal are very model-dependent, and in particular

depend strongly on the heating history of the Universe (see section 2.4.2). Different heating

mechanisms and non-linear astrophysical processes, which can take place at high redshifts and

which are extremely hard to model, lead to various heating scenarios, and in turn to very

different predictions for the 21-cm signals. This is one of the reasons why the detection of the

redshifted 21-cm line is challenging. However, the main challenge comes from the terrestrial and
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astrophysical noises that contaminate the radio band at wavelengths of 2 − 8.5 meters, which

correspond to the redshifted 21-cm wavelength from z ∼ 10 − 40. Fortunately, methods have

been developed to clean the signal from these extremely high noises, allowing the information to

be extracted. In this section we summarize our best current theoretical predictions regarding the

thermal history of the Universe, and the details of the expected 21-cm signal. The reason why

we stress the importance of the 21-cm signal is because measuring it could be our only chance

to constrain the intermediate era connecting the epoch of the CMB and the recent structure

formation history. Our main references in this section is [49].

2.4.1 The 21-cm Hydrogen Line

The 21-cm line is produced due to the hyperfine splitting of the lowest energy level of atomic

hydrogen. The state in which the spins of the proton and the electron are antiparallel is a singlet

state with degeneracy g0 = 1, whereas the excited state of this transition, in which the spins

are parallel, is a triplet state with degeneracy g1 = 3. The energy difference between the two

hyperfine states is ∆E = 5.9 × 10−6 eV, with an equivalent temperature of T⋆ = 0.068 K, and

a corresponding wavelength of λ = 21.1 cm and a frequency ν = 1420 MHz. The excitation

temperature of the hyperfine transition is usually referred to as the spin temperature TS , and is

defined via

n1
n0

=
g1
g0
e−T⋆/TS , (2.4.20)

where n1 and n0 are the number densities of each of the two hyperfine levels. The level population

depends on the environment, which includes the temperature of the incident radiation (CMB in

our case), gas kinetic temperature TK , proper density of hydrogen atoms2 nHI , neutral fraction

xHI etc. As a result, probing the spin temperature would be equivalent to probing the physical

state of the Universe at high redshifts.

The CMB (and in particular its radio-frequency tail of the black-body spectrum) serves as a

background source for the observations of the redshifted 21-cm signal from high redshifts. This

all-sky high-redshift source in principle should make possible the mapping of the distribution

of HI in the redshift range z ∼ 10 − 200. Emission and absorption of the 21-cm line from the

background radiation by an hydrogen cloud at redshift zc distorts the observed CMB black body

2The hydrogen proper density at redshift z is nHI(z) =
ρc
mp

Ωb (1− Y ) (1 + z)3 with Y , the primordial helium

fraction by mass, and mp the proton mass.
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power spectrum at radio wavelength λ0 = 0.21× (1 + zc) meters. Another possible background

source for the observations of the redshifted 21-cm line are radio-loud point sources whose strong

signal would allow us to study small-scale features of the hydrogen distribution. However, these

sources are too rare or do not exist at high redshifts and therefore are more useful for studies

at lower redshifts. Although interesting, in this work these applications of radio astronomy will

not be considered and we will keep the focus on high redshifts.

The observed intensity of the redshifted 21-cm signal depends on the emission and absorption

of the radiation along the line of sight. The intensity Iν satisfies the radiative transfer equation

dIν
dr

= −ανIν + jν ,

where r parameterizes the line of sight, and αν and jν are the absorption and emission coefficients

of the medium at frequency ν. In the Rayleigh-Jeans regime, which corresponds to the long

(radio) wavelengths, the latter equation can be formulated in terms of the brightness temperature

Tb, related to the intensity as Iν = 2kBTb(ν)ν
2/c2 (where we expanded the black-body power

spectrum to the leading order in frequency). We can write the radiative transfer equation now

in terms of the brightness temperature [49]: Tb(zc, ν) = TS(zc) (1− e−τν ) + TCMB(zc, ν)e
−τν .

Here the brightness temperature is measured in a cloud’s rest-frame at the redshift of the HI

cloud zc and at the emitted frequency ν, TCMB(zc, ν) is the incident background radiation, and

τν is the optical depth, which expresses the net absorption of the frequency ν by the cloud and

is an integral of the absorption coefficient through the cloud. The optical depth for the 21-cm

absorption can be written as (see [51] for derivation)

τν ∼ 3cλ2hA10nHI
32πkBdvr/dr

T−1
S (1 + z)−1, (2.4.21)

with h being Planck’s constant, A10 = 2.85×10−15 s−1 the spontaneous decay rate of the excited

hyperfine state, and dvr/dr = H(z)/(1 + z) the gradient of the velocity along the line of sight,

where we neglect peculiar velocity.

Putting everything together and recalling that the radiation temperature scales as (1 + z)

we can express the brightness of the 21-cm line, δTb ≡ Tb(0)− TCMB, for an observer at z = 0,
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as

δTb = 28xHI

(
Ωbh

0.033

)(
Ωm
0.27

)−1/2(1 + z

10

)1/2

(1 + δ)

[
1− TCMB

TS

]
, [mK]. (2.4.22)

Since the main concern of this thesis is the early almost-neutral Universe, we will assume that

most of the hydrogen is neutral so that xHI ∼ 1.

To determine the brightness temperature we need first to understand the dependence of the

spin temperature on the parameters of the model. Three processes determine TS :

1. Absorption of the background radiation, which drives the spin temperature to TCMB;

2. Collisional excitation, which takes TS to TK , the temperature of the gas;

3. Absorption and re-emission of Lyα photons, the Wouthuysen-Field effect [52,53], as a result

of which TS → Tc. Here Tc is the effective temperature of the Lyα radiation, determined

by the shape of the spectrum around the Lyα line. This effective temperature is very close

to the gas kinetic temperature TK .

The dependence of the spin temperature on the astrophysical quantities can be found from

equating the excitation and de-excitation rates of the hyperfine transition. We refer an interested

reader to [49] where a detailed derivation of the spin temperature appears and quote the result

here:

T−1
S =

T−1
CMB + xcT

−1
K + xαT

−1
c

1 + xc + xα
, (2.4.23)

where

xc ≡
niκ

i
10

A10

T⋆
TCMB

and xα ≡ 16πT⋆ξα
27A10TCMBmec

SαJα (2.4.24)

are the coupling coefficients. Here xc measures the coupling of the spin temperature to the

kinetic temperature of the gas via collisions either between two hydrogen atoms, which is the

leading contribution, or between a hydrogen atom and a free electron, proton or other particle,

which is a sub-leading contribution. In this expression κi10 is the rate coefficient for de-excitation

of the excited hyperfine level, and the index i runs over the type of collision. The second coupling

coefficient, xα, measures the coupling of the spin temperature to the effective temperature of

the Lyα radiation due to the Wouthuysen-Field effect. Here ξα is the oscillator strength, Jα

is the local intensity of the Lyα radiation (which we discuss in details in section 2.4.2), and
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we introduced Sα, an order of unity correction coefficient which describes the structure of the

photon distribution near the Lyα resonance, see [49] and [54] for details.

As we have seen, in order to make predictions for the 21-cm signal we need to know the

temperature of the gas at every redshift, the Lyα intensity as well as other astrophysical quan-

tities, which depend on the thermal history of the Universe. Therefore, before we continue

the discussion of the 21-cm signal, we go over the thermal history of the Universe in the next

subsection.

2.4.2 Thermal Evolution and the Expected 21-cm Signal

After decoupling, Compton scattering between the CMB and free electrons keeps the dense

gas in thermal equilibrium with the photons. This is the only heating mechanism (prior to

star formation) which keeps the gas from adiabatically cooling with the cosmic expansion. As

a result of the thermal coupling, the gas temperature follows that of the CMB and drops as

TK ∝ (1 + z). Once the gas rarefies enough in the course of the expansion of the Universe,

the thermal decoupling at 1 + z ∼ 200 occurs, and the gas starts cooling adiabatically with

TK ∝ (1 + z)2, which is a faster cooling rate than that of the CMB temperature.

The formation of the first population of stars played a crucial role in the history of our

Universe, transforming a cold and dark neutral medium into a shining, hot and ionized environ-

ment. The first stars are believed to form in light halos of ∼ 105 M⊙ via molecular hydrogen

cooling [55], which is the lowest temperature coolant at such an early epoch. Primordial star

formation starts when the Universe is about 30 million years old (z ∼ 65) [24], when large

enough dark matter halos are formed and succeed in trapping enough gas. Once the first stars

form, they start heating and ionizing the surrounding gas, eventually leading to the reionization

of the intergalactic gas (the Epoch of Reionization). When treating the first stars, three types

of radiative backgrounds must be considered: Lyman-Werner photons that dissociate the hydro-

gen molecules [56], and thus serve as a negative feedback for star formation; the Lyα radiation

that couples the 21-cm signal to the temperature of the gas via the Wouthuysen-Field effect,

thus making observations of this epoch possible; and X-rays which heat the gas and catalyzes

H2 formation. In addition, as is suggested by recent works [57], high-redshift Infra-Red (IR)

background may be created by a population of early low-mass stars with masses of few M⊙.

The IR background, if strong enough, may dominate radiative feedback in the early Universe
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competing with the Lyman-Werner radiation and suppressing H2 formation. Since the initial

mass function of the primordial stars is very uncertain and most likely the first stars were very

heavy (∼ 100 M⊙) we do not consider this background in this thesis.

The mechanism which brings the temperature of the gas above that of the CMB is one of the

high-redshift astrophysical processes which have not been constrained yet by observations. Here

we follow the standard approach and assume that the main source of energy injection into the

inter-galactic gas was the X-ray radiative background. X-rays are produced by stellar remnants

via inverse Compton scattering off of relativistic electrons accelerated in supernovae. Energetic

“primary” electrons with kinetic temperature of T ∼ 106 K, transfer their energy to other

particles and thus heat the gas. Additional examples of mechanisms which could contribute

to heating at high redshifts are heating by high-mass X-ray binaries or by quasars, accreting

stellar-mass black holes and shock heating. The latter is a result of a gravitational collapse:

energy released in a collapse of cosmic structure (e.g., in a collapse along a filament) heats the

gas. At high redshifts, when the gas temperature is low, any small perturbation in velocity

could in principle create shocks and a population of weak shocks could substantially change the

thermal history. However, most of the current studies, e.g., [58] and [59], predict this effect to be

small, and so we will ignore it in this thesis. There also exists another process which is expected

to occur which is heating by Lyα photons. This process typically requires large Lyα fluxes and

thus is important mostly at lower redshifts than those considered in this thesis [50].

To determine the temperature of the gas at every instant we follow the recipe outlined in [60].

The temperature of the gas at high redshifts evolves according to the following equation:

dTK(x, z′)

dz′
=

2

3kB(1 + xe)

dt

dz

∑
i

ϵi+
2TK
1 + z′

+
2TK
3

dD(z′)/dz′

D(z)/δnl(x, z) +D(z′)
− TK
1 + xe

dxe
dz′

, (2.4.25)

which in fact is the energy conservation law in the expanding background when energy injection

from external sources is accounted for. The first term is the energy injection through process

i (which in our case includes heating by X-rays and also heating via Compton scattering of

the CMB photons, relevant only at very high redshifts), the second term is due to the Hubble

expansion, the third term corresponds to the adiabatic heating and cooling from structure

formation, and the last term comes in as a result of ionization, where xe is the fraction of
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residual electrons. To find xe we need to add the equation

dxe
dz

= − dt

dz
αBx

2
e (1 + y)nIH , (2.4.26)

which is coupled to eq. 2.4.25 [61]. In this equation y = 0.079 is the helium to hydrogen number

ratio and αB is the case-B recombination coefficient of hydrogen which depends on the kinetic

gas temperature TK . Since we are interested in the epoch prior to the Epoch of Reionization

when most of the gas is neutral, we do not include re-ionization of gas by starlight in our model;

however, we do include the uniform decrease in the ionization fraction with time as a result of

the recombination of hydrogen.

Solving the two coupled equations 2.4.25 and 2.4.26 we can find the kinetic gas temperature

at every redshift and plug it into eq. 2.4.22 to find the brightness temperature of the 21-cm

signal. Here we summarize the main steps in the evolution of the sky-averaged (global) 21-cm

signal:

1. At high redshifts (z > 200) the gas is thermally coupled to the CMB, TK = TCMB, and,

as a result, the global signal vanishes, δTb = 0.

2. After the thermal decoupling, the gas cools adiabatically and its temperature drops below

that of the CMB. During this epoch, the spin temperature is coupled to the gas temperature

due to the collisions discussed above, which drive TS to TK . As a result, the brightness

temperature which is proportional to
(
1− TCMB

TS

)
, is negative, and the gas is seen in

absorption of the 21-cm wavelength from the background radiation. This is the earliest

epoch in the history of the Universe at which the mapping of the distribution of neutral

hydrogen becomes possible via measuring its 21-cm line.

3. When the expanding gas becomes too rare, collisional coupling becomes ineffective and

the radiative coupling brings the spin temperature to the thermal equilibrium with the

CMB. The global 21-cm signal from this epoch vanishes.

4. As the first stars turn on and start producing UV photons, the Wouthuysen-Field coupling

becomes significant, and the spin temperature becomes T−1
S =

T−1
CMB+xαT

−1
K

1+xα
. When the

intensity of Lyα radiation becomes very high, leading to xα >> 1, the spin temperature

is driven close to the gas kinetic temperature, TS → TK .
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5. When, in turn, the X-ray background builds up and heats the inter-galactic gas to a

temperature higher than that of the CMB, the global 21-cm signal is seen in emission.

The redshift at which the the average gas temperature reaches that of the CMB photons

is referred to as the redshift of the heating transition.

6. The starlight also reionizes the gas. With the rising of the ionization fraction, the global

abundance of neutral hydrogen drops to zero and the 21-cm signal vanishes. The redshift

of reionization is still uncertain and is expected to be around z ∼ 7 − 10, constrained by

the WMAP data and by observations of distant quasars.

Each of the important transitions in the evolution of the brightness temperature (such as the

heating transition, the EoR, and the Lyα transition when xα ∼ 1) depends on the details of

the scenario of structure and star formation, heating history, and mutual timing of the radiative

backgrounds, so that in total the expected global 21-cm signal has a very model-dependent

profile of peaks and troughs. In addition to the sky-averaged signal, fluctuations in the 21-cm

background can be studied. To understand these fluctuations, we need to include fluctuations

in every component that contributes to the 21-cm signal, such as the density, heating rate and

the Lyα and Lyman-Werner radiative backgrounds.

As one would expect, the very first stars were both rare and highly clustered due to the bias

by large-scale density modes [39] (in general, regions of the sky with a slightly higher density

tend to form stars earlier than other regions, such as voids). This clumpiness is reflected in all the

high-redshift radiative backgrounds which build up as star formation progresses (e.g., [54,62,63]).

In fact, all the fluctuations in the radiative backgrounds are proportional to the fluctuations in

the star formation rate density ρ̇⋆ = ρbf∗
dfcoll
dt , where f∗ is the star formation efficiency and fcoll

is the collapsed fraction. The intensity of the radiative fluxes at every location can be found as

a weighted sum of the radiation from all the sources within ∼ 100− 200 Mpc. This finite range

is referred to as an “effective horizon”, different for each type of radiation, and which arises due

to the effects of redshift, time delay and optical depth.

Fluctuations in X-rays, which in turn cause fluctuations in the gas temperature and thus in

the redshifted 21-cm signal, appear to be strongest around the redshift of the heating transition

(z ∼ 20). This feature makes them more attractive in terms of future observations than, for

example, fluctuations in the Lyα background which couple to the 21-cm background at higher
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redshifts where the noise is higher (see the discussion in the next section 2.4.3 or in [49] and [70]).

In this thesis we use the prescription outlined in [60] to estimate the inhomogeneous heating

rate of the X-ray background

ϵX(z) =
(1 + z)2

4π

∫
dz′

c

H(z′)

∫
dν e−τ ϵ̃X(ν, z, z

′), (2.4.27)

with τ =
∫
ds [nHIσHI + nHeIσHeI + nHeIIσHeII ] being the optical depth. We have defined

ϵ̃X(ν, z, z
′) ≡ 4πρ̇⋆ξX

α

ν0

(
ν ′

ν0

)−α−1∑
i

(hν − Ei)fheatfixiσi, (2.4.28)

where ξX is the X-ray efficiency, α parameterizes the X-ray luminosity of the sources, which

scales as
(
ν
ν0

)−α
with ν0 being the lowest X-ray frequency available, and ν ′ = ν

(
1+z′′

1+z

)
is the

emission frequency. The sum in eq. 2.4.28 runs over species i = HI, HeI and HeII, Ethi is the

ionization threshold energy of i, hν−Ethi is the electron energy fraction fheat of which goes into

heating, fi is the number fraction of i, xi is its ionization fraction, and σi is its ionization cross-

section. To calculate the fraction fheat of electron total energy, E = hν − Ethi , that goes into

heat we use the fit from [65] and [66], where the interactions of the electrons and the background

primordial gas were explored:

fheat(E) = 3.9811

(
11

E

)0.7

x0.4i
(
1− x0.34i

)2
+

[
1−

(
1− x0.2663i

)1.3163]
, E > 11 eV, (2.4.29)

and vanishing otherwise. The X-ray efficiency ξX at high redshifts is highly unconstrained due

to the lack of observations. What is usually done is to assume that the efficiency does not

evolve much with redshift, and thus one can calibrate it by using present day observations. For

instance, here we select ξX = 1057 M−1
⊙ , which matches the total X-ray luminosity per unit star

formation rate at low redshifts [67]. Using the expression for heating efficiency from eq. 2.4.27

in eq. 2.4.25 we can now find the kinetic gas temperature at each redshift.

Fluctuations in the Lyman-Werner background and their impact on the brightness temper-

ature have not been studied sufficiently and are one of the topics of this thesis. They affect

the growth of structure in an inhomogeneous way by providing negative feedback to star for-

mation. The stronger the local background Lyman-Werner intensity, the stronger is the effect

of the background on star formation and, as a result, fewer stars are formed in the region. The
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Lyman-Werner background from direct stellar emission [68] reads:

JLW =
(1 + z)2

4π

∫ z+zLW

z

cdz′

H(z′)
fmod(z

′ − z)ϵ(z),

where ϵ(z) = ρ̇⋆
mb
ϵb, and ϵb is the mean emissivity in the Lyman-Werner band. fmod(z − z′)

introduced by [63] is the modulation factor, which is the fraction of the Lyman-Werner radiation

emitted by a source at z′ and received at z without being scattered or absorbed, and which also

defines the effective horizon for Lyman-Werner photons. We improved this approximation in [29]

and discuss it in chapter 4, where we replace fmod by a more realistic function denoted by fLW

which accounts for all the absorption lines of molecular hydrogen.

Finally, for completeness (as it is not of direct interest in this thesis but for our follow-

up paper [30]), we comment on the Lyα background. The effect of the Lyα photons on the

fluctuations in the spin temperature is expected to be important at high redshifts, around

z = 30. Once the intensity of this radiative background becomes very strong, the coupling

saturates (xα >> 1) and the fluctuations in Lyα stop affecting the fluctuations in the brightness

temperature. The intensity of the Lyα flux due to direct stellar emission at redshift z is

Jα(z) =
(1 + z)2

4π

n=nmax∑
n=2

∫ zmax(n)

z

cdz′

H(z′)
frecycle(n)ϵ(ν

′
n, z

′),

where ϵ(νn, z) = ρ̇⋆
mb
ϵb(ν) is the comoving emissivity at frequency ν, ϵb(ν) is the spectral dis-

tribution function [64] which has to be evaluated at the emitted frequency ν ′n = 1+z′

1+z νn, and

frecycle(n) is the fraction of Lyn photons that is converted into Lyα photons through a series of

radiative transitions after absorption by an hydrogen atom [54]. To be able to cascade to Lyα at

the location of an absorbing hydrogen atom at redshift zc (i.e., to belong to the Lyn series at this

location), the photon must be emitted below zmax(n) given by 1+ zmax(n) = (1+ zc)
1−(1+n)−2

1−n−2 ,

which determines the effective horizon for the Lyα background.

2.4.3 Noise

Detection of the redshifted 21-cm signal is expected to be tricky due to strong noises in radio

bands. The strongest component is due to the radio-frequency emissions of man-made devices

which interfere with the radio signal from space. This component of the noise can reach an
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amplitude of 109 K, which is many orders of magnitude stronger than the expected signal of

1 − 100 mK (e.g., [28]). The way to avoid this noise is to build telescopes in a radio-quiet

location, or to use radio-quiet bands for observations. The magnitudes of other noises exceed

the amplitude of the expected signal by 5−6 orders of magnitude. At the frequencies of interest

10 − 250 MHz, at which the redshifted 21-cm signal from 5 ≤ z ≤ 150 is expected, the sky is

dominated by the synchrotron emission from our galaxy. In relatively quiet directions the noise

is, thus,

Tsky ∼ 180
( ν

180 MHz

)−2.6
K. (2.4.30)

This noise increases toward lower frequencies corresponding to the cosmological signal from the

high redshift end, making the 21-cm signal harder to observe in this range. In particular, the

dependence 2.4.30 implies that the noise power spectrum scales as (1+z)5.2 with redshift [28,70].

Another example of noise is the ionospheric distortion, consisting in reflections of radio waves

by the ionosphere that can distort the signal observed by ground-based telescopes. Moreover

the ionosphere is opaque for frequencies of ν < 20 MHz, and so we cannot make observations

corresponding to redshifts of z > 70 with ground based experiments, and need to use satellites

from space, or moon based settlements.

The synchrotron emission from our galaxy, as well as many other astrophysical foregrounds,

are expected to have a smooth spectrum over a wide range of frequencies, unlike the redshifted

21-cm signal which is expected to have a nontrivial spectral structure. This property should

make it possible to separate the cosmological radio signal from the noise. In particular, removing

the lowest wavenumbers (k < 0.02 Mpc−1) leaves the signal clean of the majority of foreground

contaminations.
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Chapter 3

Distribution of First Stars

In this Chapter, partially based on the paper by A. Fialkov, R. Barkana, D. Tseliakhovich and

C. M. Hirata (2012) [24], we discuss the effect of the relative velocities on the first population

of stars.

The formation of the first stars has been an extraordinary event in the history of the Uni-

verse which had a dramatic impact on its thermal evolution, chemical compound and growth

of structure. This event initiated a transition between the cold, neutral, and metal-free envi-

ronment, the state of the Universe during the so-called “dark ages”, and the ionized, hot, and

metal-rich ambient that we see today. Primordial star formation is thought to be simple due to

the rather elementary primordial chemistry and the simplified gas dynamics, in the absence of

dynamically-relevant magnetic fields and feedback from luminous objects [55, 56, 71]. The first

stars are thought to be formed via radiative cooling of neutral hydrogen, which is the lowest tem-

perature coolant at high redshifts, in light halos with mass higher than the threshold ∼ 105 M⊙.

This scenario has been confirmed by numerical simulations (using both Adaptive Mesh Refine-

ment (AMR) and Smooth Particle Hydrodynamics (SPH) codes), e.g., [72–78], which however

ignored the important effect of relative supersonic motion between gas and dark matter halos.

This effect has only recently been acknowledged by Tseliakhovich and Hirata in 2010 [19], and

will be reviewed in details in section (3.1). The authors of [19] showed that the average relative

velocities between dark matter and gas, denoted here by vbc, were supersonic at high redshifts

and had a significant impact on the formation of first stars. In the same paper they also showed

that relative velocities add a scale-dependent bias to structure formation, and suppress the total

matter power spectrum on small scales, e.g. on scales 104 − 107 M⊙ at redshift z = 40. These
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values for the relative velocities appear to increase clustering of first bright objects amplifying

the effect of the bias by large-scale density modes [39]. As a result, the first population of stars is

characterized by strong fluctuations in number density on surprisingly large scales. This implies

that small volumes are usually very non-representative when high-redshifts are considered, and

that we cannot make generic conclusions about the Universe at high redshifts based on small

scale numerical simulations only. On the other hand, analytical calculations, which are not lim-

ited at large scales, fail to describe non-linear processes on small scales, such as star formation.

The only way to simulate a realistic universe at high redshifts is thus compromising between

numerical simulations and analytical calculations, taking the best of the two approaches. In this

chapter and the next, we discuss alternative computational methods which allow us to follow

the evolution of the population of the first stars on large scales. In section (3.2) of this chapter

we study the impact of relative velocities together with large-scale density modes on statistical

properties of halos and stars on small scales within patches in which vbc are coherent (this prop-

erty of the velocity field is discussed in section (3.1)). We later (in chapter 4) apply these results

to explore the signature of first stars on large-scale modes of the redshifted 21-cm signal [28,29].

3.1 Relative Velocities, an Overview

Perturbations in dark matter density and baryons evolve very differently prior to recombina-

tion: fluctuations in dark matter grow since matter-radiation equality at z ∼ 3500, and by the

redshift of hydrogen recombination dark matter particles acquire significant velocities due to

gravitational acceleration; on the other hand, baryons are tightly coupled to radiation and thus

are stabilized against gravitational collapse and their velocities right after decoupling keep traces

of the acoustic oscillations1. As a result, relative velocities between baryons and dark matter

(vbc = vb−vc) after decoupling of the CMB photons are high, and their power spectrum exhibits

Baryon Acoustic Oscillations (like the ones seen in the matter power spectrum). Due to the

fact that the sound speed of baryons drops significantly as photons decouple from baryons, from

1The residual velocities of baryons right after recombination and their effect on fluctuations in baryon density
field were mentioned in literature, e.g. by R. A. Sunyaev and Ya. B. Zeldovich (1970) [79] (see also [80]).
Moreover, the implications of the “velocity overshoot” effect on the CMB and on the matter transfer function
were considered by W. Hu and N. Sugiyama (1996) [81], who also briefly mentioned that there should be an
interplay between gravitational collapse and the “overshoot effect”. However the fact that the relative motion
between baryons and dark matter was supersonic right after recombination as well as the crucial effect of this
motion on primordial star formation, which we discuss in this thesis and which were first noted in [19], were not
discussed previously in literature.
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∼ c/
√
3 ∼ 1.7×105 km sec−1 to ∼ 6 km sec−1, relative velocities become highly supersonic after

recombination. Relative velocities decay with redshift, scaling as (1 + z), as any vector pertur-

bation in an expanding universe, and therefore are mostly important at high redshifts. Relative

velocities, with root mean square of ∼ 30 km sec−1, provide a new type of initial conditions at

recombination in addition to density and peculiar velocities. The new initial conditions appear

to have a significant impact on primordial star formation, as we discuss further.

Generally, the standard assumption of Gaussian initial conditions from inflation predicts that

the density field and the components of relative velocities are correlated Gaussian random vari-

ables. The magnitude of the velocity field (three-dimensional Gaussian) is distributed according

to the Maxwell-Boltzmann distribution function:

pv(v) =

(
3

2πσ2v

)3/2

4πv2bc exp

(
− 3v2

2σ2v

)
, (3.1.1)

where σv is the root-mean-square of the velocity field. Within linear theory of structure for-

mation, the velocity and the density fields are related through the continuity equation which

connects the velocity divergence to the time derivative of the density δ̇c = −∇vc and δ̇b = −∇vb

(or in Fourier space δ̇i = −ikvk,i where i is either c or b). This relation ensures that the local

values of the velocity and density fields are uncorrelated. In addition, the continuity equation

adds an extra factor of 1/k to the velocity with respect to the density (where k is the wavenum-

ber). This factor suppress perturbations in velocity on small scales (and boost them up at large

scales) with respect to perturbations in density, making the velocity field coherent on larger scale

than that of the density field. In our case, relative velocity fluctuations have significant power

over the range k ∼ 0.01− 0.5 Mpc−1, resulting in a characteristic scale of fluctuations of sound

horizon at recombination of ∼ 150 Mpc. On much larger scales, which were out of causal horizon

when the relative velocities were generated, fluctuations in vbc are uncorrelated. On the other

hand, this field is almost coherent on small scales ≤ 10 comoving Mpc due to Silk damping and

suppression by the extra factor 1/k. In this work we assume that relative velocities are uniform

on scales smaller than ∼ 3 comoving Mpc, which is a good approximation [19]. Values of vbc

within such coherent patches (or “pixels”) are distributed according to eq. (3.1.1) with σbc ∼ 30

km sec−1 at recombination. We refer to the uniform relative velocity within each patch as the

“bulk” or “streaming” velocity. As expected, in addition to the bulk velocity, within each patch
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there are small-scale peculiar velocities of baryons and dark matter related to the evolution of

perturbations and formation of halos within the patch.

After decoupling, baryons are no longer supported by photons and fall into potential wells

formed by dark matter which moves with supersonic speed vbc through the gas. It has to be noted

that the linear theory no longer holds when applied to structure formation at scales smaller than

several Mpc at high redshifts. As was shown in [19], due to the effect of vbc, the non-linear terms

that were ignored in linearized fluid equations describing evolution of perturbations in baryons

and dark matter become non-perturbative when the velocities are added. To describe the growth

of structure in baryons with vbc we solve the complete set of nonlinear fluid equations, keeping

nonlinear terms, inside a patch with a specified value of streaming velocity, as first done in [19].

The nonlinear terms appear to be non-perturbative when the growth of structure on small

scales and at high redshifts is considered. Luckily, due to the coherence property of streaming

velocities, vbc is fixed within each patch, which converts the problematic nonlinear terms into

effectively linear ones when exploring structure formation within each pixel. Therefore it is

easy to study growth of structure on scales smaller than the coherence scale of the relative

velocities: the evolution equations for the perturbations inside each patch are still linear (we

ignore second order terms that couple tiny peculiar velocities and density perturbations) but

become dependent on the value of vbc within the patch.

The effect of relative velocities was shown to be particularly important for the formation of

first stars and galaxies. The first baryonic objects are forced to form in a moving background

of dark matter potential wells. Relative velocities can then be viewed as an anisotropic pressure

term (in addition to the hydrostatic pressure of baryons) which hinders the process of gas

accretion by dark matter halos and redistributes gas density within halos. As a result, heavier

halos than in the case without vbc are needed to reach high enough gas densities and start

forming stars. In this case, stars form later and in heavier halos, with an inhomogeneous delay

biased by the local value of vbc. Three distinct effects due to the supersonic relative motion

between gas and dark matter:

1. The total matter power spectrum suppression, by washing out perturbations in baryons

[19,82];

2. Suppression of gas content of small halos (e.g. up to Mh = 107M⊙ at z = 20) [20,23,83];
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3. Boosting of minimal mass of a halo in which stars can form, making it harder to form

stars [21,22,24,26,84].

In the following we describe each effect separately and discuss the overall effect of vbc on pri-

mordial star formation. We later apply the conclusions we reach in this chapter to the study of

the effect of relative velocities on the redshifted 21-cm signal of neutral hydrogen in chapter 4.

Although the main impact of vbc happens at high redshifts, and it becomes less relevant for

structure formation at present times (since on the one hand relative velocities decay with time,

while on the other hand the typical mass of galactic host halos increases), it may still have a

non-negligible effect today. For instance, it may slightly shift the position of the BAO peaks

and imprint a characteristic signature in bispectrum of galaxies [85].

3.1.1 Impact of vbc on the Halo Abundance and Gas Content

The impact of relative velocities on the halo abundance was first discussed in [19] and then

elaborated in [23] and [24]. Since the velocities wash out perturbations in baryons, which

constitute 1/6 of the total mass in the Universe, fluctuations in the total matter distribution

are suppressed as well. To model this suppression we apply a semi-analytical approach, solving

our modified fluid equations discussed above within a patch of coherent streaming velocity. We

find matter power spectra for density contrast of baryons δb(k) and of dark matter δc(k) at each

redshift and for different values of vbc. Using this information we then find the total matter

power spectrum versus z and vbc, which allows us to study the statistics of fluctuations at scales

smaller than our pixel size (which we chose to be 3 Mpc). We next analyze the halo abundance

within the patch applying standard statistical methods: e.g., taking either Sheth-Tormen mass

fraction [38], or using the hybrid prescription from [39], which accounts for bias by large-scale

density modes on scales larger than the size of the patch. The halo abundance is given by the

following relation

dn

dM
=
ρ̄0
M

∣∣∣∣ dSdM
∣∣∣∣ f (δc(z), S) , (3.1.2)

where dn/dM is the comoving abundance of halos of mass M , S(M, vbc, z) is the variance of

matter fluctuations averaged on the mass scaleM , and f (δc(z), S) is the mass fraction. Relative

velocities manifest themselves by suppressing the abundance of light halos, for instance, on

104 − 107 M⊙ scales at z = 20 [19]. The suppression is stronger in patch where vbc is high.
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As was discussed above, fluctuations in dark matter start to grow right after mater-radiation

equality, whereas baryons are kept from gravitational collapse by pressure until the moment

of recombination. Therefore, when baryons decouple they are attracted by more compact dark

matter bodies so that, eventually, fluctuations in baryons trace the ones in dark matter. However,

according to the theory of Jeans instability, this happens only when gravity is strong enough to

overcome gas pressure and does not happen at small enough scales. Relative velocities, which

add pressure, lead to an increment of the Jeans scale. As a result, some of the halos that would

be gas-rich in a vbc-less universe become gas-poor in the real Universe, as was first noted in [20]

and later elaborated in [23] and [24]. To estimate the gas content of a halo of mass M in a

patch with fixed value of vbc we follow the prescription outlined in [86] and [23]. The authors of

these papers make use of the fact that the baryonic power spectrum traces that of dark matter

on large scales, while on small scales perturbations in baryons are suppressed. The transition

scale between the two regimes is called filtering scale, and is denoted by kF in phase space,

and was originally introduced in [87]. In our case the filtering scale becomes dependent on the

value of vbc in each specific patch. The presence of this scale is very useful to separate scales at

which gas traces dark matter and can cluster, from scales at which baryonic perturbations are

suppressed. A convenient way to proceed is to define the filtering mass MF = 4π
3 ρ̄0

(
π
kF

)3
, with

ρ̄0 being the mean matter density today. MF provides a smooth transition between gas-reach

(if M >> MF ) and gas-poor (if M << MF ) halos and in our scenario is a function of the local

value of vbc. We calculate the filtering scale by expanding the baryon-to-total ratio of the power

spectra up to linear order in k2 (following [86]) δb
δtot

= 1− k2

k2F
+ rLSS , where δtot is total density

perturbation and the k-independent term rLSS describes the ratio in the limit of large scales. As

anticipated and as was noted in [23], the effect of streaming motion averaged over the volume

of the observable Universe leads to a growth of the filtering mass by an order of magnitude at

any redshift in the range 10 < z < 100.

The filtering scale is a useful tool to determine the amount of gas that falls into halos and

to estimate how much of this gas is capable of cooling and contributes to star formation. The

gas mass fraction, denoted by fg, can be evaluated through the relation

fg(M) = fb,0

[
1 +

(
2α/3 − 1

)(
MF

M

)α]−3/α

,
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suggested by [88], which we apply with parameters calibrated against numerical hydrodynamical

simulations taken from [89] and [90], giving α ∼ 0.7 and fb,0 = fb (1 + 3.2rLSS), where fb =

Ωb/Ωm is the mean cosmic baryon fraction. Note that in our case MF depends on vbc and so

does the amount of gas in halos. For instance, at z = 20 the streaming motion suppresses the

gas content in 105 M⊙ halos by a factor of 2 in average over the observable Universe. The

suppression in heavier halos is less significant: the gas content of 106 M⊙ halos is suppressed by

a factor of 1.12, while the deficit in gas content of 107 M⊙ halos is only ∼ 2%.

3.1.2 Impact of vbc on Minimum Halo Cooling Mass

As we advocated above, a halo with a mass of M > MF is capable of accreting gas, however

a totally different question is whether or not it will form stars out of the accumulated gas. In

fact, in order to allow star formation, a halo should be massive enough to accelerate the gas to

high enough infall velocities so that this can heat, radiate, cool and finally condense the gas into

stars.

First stars are thought to be formed out of molecular hydrogen which is the lowest temper-

ature coolant in the metal-free primordial gas; in fact, a temperature of T ≥ 300 K is needed to

initiate the radiative cooling process (for comparison, atomic hydrogen radiatively cools when

it reaches T ∼ 104 K). Since the cooling temperature of molecular hydrogen is so low, stars can

form even in light halos of mass ∼ 105 M⊙ [55]. More generally, if the mass of a dark matter

halo is higher than the threshold referred to as the minimum cooling mass, denoted here by

Mcool, the collapsing gas is heated above the critical temperature. In this case it cools down

by emitting radiation and condenses making star formation possible. The threshold can also be

described as a minimum circular velocity, Vcool, via the standard relation Vc =
√
GM/R for a

halo of massM and virial radius R. In our case the streaming velocity is expected to perturb the

collapse of baryons, interfering with the circular infall. Therefore we can anticipate an increase

in the minimal cooling mass due to the velocities.

Luckily, some of the recent numerical simulations do include the effect of the streaming

motion on star formation. This effect was first simulated by [84], using an SPH code to follow

3203 particles each in gas and dark matter within a 1 Mpc box. The authors found a reduction in

the star formation rates, the halo abundance and gas fractions of halos, but did not consider the

minimum cooling mass. In [22] an SPH code was used to follow 1283 particles of each type within
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a 0.1h−1 Mpc box. In another paper [21] a moving-mesh (hereafter MMH) code was used to

follow 2563 particles in a 0.5 Mpc box; in this work, once the authors of [21] identify a halo they

run a zoomed-in simulation which achieves a much higher resolution than the other simulation

papers. To model star formation, the simulations mentioned here tracked the abundance and

the cooling of the chemical components that filled the early universe, along with the effect of

dark matter and gravity. The relevant chemical network includes the evolution of H, H+, H−,

H+
2 , H2, He, He+, He++, e−, D, D+, D−, HD and HD+, which is determined by processes

such as H and He collisional ionisation, excitation and recombination cooling, bremsstrahlung,

inverse Compton cooling, collisional excitation cooling via H2 and HD, and H2 cooling via

collisions with protons and electrons. More recently, [82] and [83] simulated the effect of relative

velocities, carefully keeping under control numerical resolution and statistical uncertainties, but

focusing on the abundance of halos and gas content i.e., not specifying minimal cooling mass for

star formation.

In this thesis we focus on the results of the two SPH simulations [21, 22] which studied the

impact of the relative streaming velocity on the formation of the first stars, and in particular

on minimal cooling mass, the new effect that has not been included in the analytical studies

prior to our paper [24]. To be precise, the simulations provide the mass of a halo when it

first allows a star to form, which means when it first contains a cooling, rapidly-collapsing gas

core. The results of these simulations show a substantially increased halo mass in regions with

a significant relative velocity. This is a different effect from the suppression of total amount of

gas considered in section (3.1.1), which implies a smaller number of stars in the halo at a given

time; instead, in this case there is a substantial delay in the formation of the first star within

the halo. Moreover, this effect is not simply related to the total amount of accreted gas, since in

the cases with a bulk velocity, even if we wait for the halo to accrete the same total gas mass as

its no-velocity counterpart, it still does not form a star (even within the now deeper potential of

a more massive host halo); the delay is substantially longer than would be expected based on a

fixed total mass of accreted gas. Instead, it appears that the explanation lies with the internal

density and temperature profiles of the gas which are strongly affected by the presence of the

streaming motion. The two simulations agreed on that the velocities increase the mass of star

forming halos by roughly 60% as well as delay star formation by ∆z ∼ 5.

As there were only few halos created in these simulations (12 in total), it is hard to make
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any statistically significant claim based on these results. To add the effect of velocities on the

minimal cooling mass to our semi-analytical model, which (as we show later) allows to study

statistics of the distribution of first stars in the early Universe, we fit masses of star-forming

halos from the simulations to find the dependence of the minimum halo mass on redshift and

vbc [24]. This will then allow us to study the effect of the relative velocity on the formation of

the first stars using statistical methods, averaging over large cosmological regions that cannot

be directly produced by small-scale simulations.

The conclusions of [21] and [22] seem to be contradictory, in one paper a negligible effect

on star-forming halos is reported, while the other claims that the effect is large. In order to

meaningfully compare the results presented in these papers, it is important to put them both on

the same scale. For this reason we express the cooling threshold as a halo circular velocity, since

simulations cited above where bulk velocity is not considered find an approximately redshift-

independent threshold Vcool(z) of about 4 km sec−1, which slightly varies from simulation to

simulation; this is naturally expected since molecular cooling turns on essentially at a fixed

gas temperature, and the halo circular velocity determines the virial temperature to which the

gas is heated. Thus, the limit of zero bulk velocity simply gives a fixed threshold Vcool(z).

When we add relative velocities the minimum circular velocity in a patch may in principle be

a separate function of two parameters, the redshift z and the bulk velocity at halo formation

vbc(z). The history of vbc at earlier redshifts cannot introduce additional parameters, since given

both z and vbc(z) the full history of vbc is determined, i.e., at any other redshift z′ vbc(z
′) =

vbc(z)× (1 + z′)/(1 + z).

We now consider the limit of a very high bulk velocity, vbc(z) ≫ Vcool(z), so that the effect

of Vcool(z) is negligible, and assume a constant vbc versus redshift, fixed at its final value vbc(z)

at the halo formation redshift z. In this case there is only one velocity scale in the problem.

As in the Jeans mass analysis, in the reference frame of a collapsing dark matter halo with

a circular velocity Vc, clearly gravity will be able to pull in the gas (which streams by at the

velocity vbc(z)) if Vc > vbc(z). Now, in the real case where vbc(z
′) is higher during the formation

of the halo, we would expect to get a threshold that is higher than vbc(z), but by a fixed factor,

because the physics is scale-free: on one side, vbc scales in a simple way with redshift, and on

the other side, halo formation (in the high-redshift, Einstein de-Sitter universe) also scales in

a simple way, as we know from spherical collapse; e.g., turnaround for a halo that forms at
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redshift z always occurs at z′ where 1 + z′ = 1.59(1 + z) so that vbc(z
′) = 1.59vbc(z). The only

new scale that enters is from vbc at recombination, but as long as we consider halos that form

long after recombination, this should be insignificant. Thus, the threshold circular velocity Vcool

should change continuously between two limits, Vcool = Vcool(z) when vbc(z) ≪ Vcool(z), and

Vcool = αvbc(z) when vbc(z) ≫ Vcool(z) (in terms of a fixed, dimensionless parameter α). When

Vcool is expressed as a function of vbc(z), there is no additional dependence on z in these two

limits, so we might naturally expect this to be true in the intermediate region as well. Indeed,

the above argument suggests more generally that halo formation and vbc(z) scale together, so

that the effect of the bulk velocity should not depend separately on redshift; also the effect of

molecular cooling is most likely a redshift-independent threshold. Thus, when both effects act

together, the result should still depend on just one parameter.

We expect the dependence on velocity to be smooth and well-behaved for vector v⃗bc(z) near

zero, i.e., as a function of the velocity components. This suggests a quadratic dependence on

[vbc(z)]
2 = [v⃗bc(z)]

2 rather than, e.g., a linear dependence on vbc(z). We thus propose a simple

ansatz for the minimum cooling threshold of halos that form at redshift z:

Vcool(z) =
{
Vcool(z)

2 + [αvbc(z)]
2
}1/2

. (3.1.3)

The dependence of the circular velocity Vcool on redshift only through the final value vbc(z)

implies that the star-formation threshold in a patch with a statistically rare, high value of vbc at

low redshift is the same as the threshold in a patch with the same (but now statistically more

typical) value of vbc at high redshift. This should be the case during the era of primordial star

formation, before metal enrichment and other feedbacks complicate matters.

We summarize the results of the two simulations together with the best fits to each of them

(with Vcool(z) and α as free parameters) in fig. 3.1. We obtain four data points from [22] with

non-zero velocities (and two more at vbc(z) = 0), and three points from [21] (plus three more at

vbc(z) = 0). The best-fit parameters are:

1. Vcool(z) = 3.640 km sec−1 and α = 3.176 for the results of [22];

2. Vcool(z) = 3.786 km sec−1 and α = 4.707 for [21].

We note that despite the small numbers of halos, we would not necessarily expect as large
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Figure 3.1: The minimum halo circular velocity for gas cooling via molecular
hydrogen versus the bulk velocity vbc(z) when the halo virializes. Data are
taken from [22] (•) and [21] (�). We show our fits to each set of simulation
results (dot-dashed and dashed, respectively). We also show our “optimal”
fit to SPH simulations (thick solid line), the “fit” to AMR simulations (reg-
ular solid line), and the case of no streaming velocity (dotted line, based on
our optimal fit). The vertical solid line marks the root-mean-square value
of vbc(z) at z = 20.

a scatter in the measured Vcool(z) as in other measurements of halo properties; for example, in

a sample with a large number of halos of various masses at each redshift, we would expect a

large range of redshifts for the first star formation within a halo, but if we only take halos that

first formed a star at a given redshift z, their masses at z might span a narrow range, all near

the minimum cooling mass for that redshift (since any halo well above the cooling mass at z

would already have formed a star earlier). In any case, our ansatz fits each set of simulation

results reasonably well, but there is some scatter and also a systematic difference between the

two sets (with [21] indicating a stronger effect of the bulk velocity). Due to the small number of

simulated halos, it is difficult to separate the possible effects of different numerical resolutions,

other differences in the gravitational or hydrodynamical solvers, and real cosmic scatter among

halos. Given the systematic offset, we do not simultaneously fit both sets of points, but instead

average the best-fit parameters of the two SPH simulation sets. We mostly use this fit, which

we refer to as our optimal fit, in the following sections:

Vcool(z) =
{
(3.714 km/s)2 + [4.015 · vbc(z)]2

}1/2
. (3.1.4)

There is some discrepancy in the value of Vcool(z) found in AMR and SPH simulations. In
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order to test the full current uncertainty range including different types of simulations, we also

consider the average value Vcool(z) ∼ 4.2 km sec−1 found in AMR simulations [77,78]. Thus, we

combine this value of Vcool(z) with α from our optimal fit to obtain what we refer to as a “fit” to

AMR simulations. In other words, we assume that the discrepancy between the two simulation

methods is only in the cooling process (due to systematic entropy differences in dense cores), but

that they would agree on the effect of the bulk motion. Regardless of which fit we use, fig. 3.1

shows that the relative motion has a large effect on the minimum circular velocity.

The implications for the minimum cooling mass as a function of redshift are also shown

in fig. 3.2. In a patch with no relative motion, the mass drops rapidly with redshift, since at

higher redshift the gas density is higher and a given halo mass heats the infalling gas to a higher

virial temperature. However, in a region at the root-mean-square value of vbc
2 the higher bulk

velocity at high redshift implies that a higher halo mass is needed for efficient molecular cooling.

In particular, at redshift 20 a patch with vbc = 0 will form stars in 3.6 × 105 M⊙ halos, while

a patch with the root-mean-square value of vbc has a minimum cooling mass of 6.0 × 105 M⊙

according to the optimal fit, or a range of (4.8 − 7.3) × 105 M⊙ from the other fits. At z = 60

these numbers become 7.2× 104 M⊙, 7.0× 105 M⊙, and (4.1− 10.3)× 105 M⊙, respectively. In

patches with low bulk velocity we expect stars to form earlier, since the halos with lower masses

are more abundant and form earlier in the hierarchical picture of structure formation. This is

the basis of the discussion that follows.

3.2 Patchy Universe

3.2.1 Description of Numerical Methods

Numerical simulations face a great difficulty when trying to simulate the population of first

stars, since they must resolve the then-typical tiny galaxies while at the same time capture the

global distribution of rare objects. Therefore, cosmological simulations that cover the complete

range of scales are not currently feasible. To overcome this difficulty in [24], following [19, 23]

summarized in the discussion above, we make use of the fact that relative velocities are coherent

on scales relevant for primordial star formation (< 10 comoving Mpc), which allows to simulate

2Since vbc decays as 1 + z throughout the universe, a patch that has the root-mean-square value of vbc at one
redshift will have the root-mean-square value of the relative velocity at every redshift, and in particular vbc = 30
km sec−1 at recombination.
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Figure 3.2: We show the minimum halo mass for molecular cooling versus
redshift, in a patch with the root-mean-square value of vbc(z) at each redshift
z, for each of the fits from the top panel; in particular, we show (dotted line)
the case of no relative motion based on our optimal fit (i.e., Vcool = Vcoolz =
3.714 km sec−1).

halo formation in small patches (here taken to be of 3 comoving Mpc) of uniform vbc using

the modified linear equations for the evolution of perturbations in baryon and dark matter.

In addition, though, in each patch of coherent velocity the mean density is slightly different,

varying as a result of random density fluctuations on scales larger than the patch size δR. To

account for non-linear physics relevant for star formation we use the fits to numerical simulations

discussed above and estimate the halo abundance, gas accretion and criteria for star formation

in a patch of specific vbc and δR. We run over the values for the streaming velocity inside this

patch 0 ≤ vbc/σbc ≤ 5 as well as for the mean density on the 3 Mpc scale −3 ≤ δR/σ ≤ 3,

where σ2 is the variance of density on 3 Mpc scales, and solve for the biased power spectra at

every redshift 10 ≤ z ≤ 60 using the CAMB-sources linear perturbation code [91] to generate

initial conditions at recombination (specifically, at z = 1020 and z = 970 in order to obtain the

needed derivatives). Our approach also accounts for the effect of Compton heating from the

CMB photons on the sound speed and fluctuations in the gas temperature (after [61] and [23]).

The technique described above provides us with a table of data which contains the gas

fraction in star-forming and star-less halos at every redshift in each velocity and density bin,

which we can use to analyze the statistics of star formation. The first category consists of large

halos in which the gas can cool via molecular hydrogen cooling; these are presumed to be the

sites of formation of the first stars, and are obviously most important since the stellar radiation

is in principle observable, and it also produces feedback on the intergalactic medium and on
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other nearby sites of star formation. The gas content of these halos in a coherent patch can

be found using the methods discussed in section (3.1.1), assuming halos to be heavy enough to

allow star formation, i.e., with mass larger than the minimum cooling mass Mcool. The fraction

of gas in star forming halos reads

fgas(> Mcool) =

∫ ∞

Mcool

M

ρ̄0

dn

dM

fg(M)

fb
dM (3.2.5)

and is a function of vbc, δR and the redshift. Also interesting, in principle, is the second category:

namely the smaller halos in which the gas accumulates to roughly virial density and yet cannot

cool. This halos remain star-less and act as reservoirs of metal free gas at redshifts lower than

without vbc. This small halos may affect the epoch of reionization by acting as a sink for ionizing

photons [92–95] and may generate a 21-cm signal from collisional excitation of H i [49,96]. There

are also empty dark matter halos which cannot accrete gas at all, and contribute to the Universal

evolution only due to their gravity. A discussion of these halos is out of the scope of this thesis.

In the following subsections we explore the probability distribution function (PDF) of the

gas fraction, beginning with its dependence on the bulk velocity. We then study the full PDF

as determined by the joint dependence of the gas fraction in halos on the bulk velocity and the

average overdensity in each patch. Finally, we find the delay in formation time of the very first

star in the Universe due to the velocity.

3.2.2 Global Averaging

We first want to analyze the global star-formation history and the averaged effect of the velocity

on star formation. If we consider patches that are still small enough to have a coherent vbc (e.g.,

our cubes of 3 comoving Mpc on a side), then the absolute value of the bulk velocity in each

one follows a Maxwell-Boltzmann distribution (eq. 3.1.1), whereas the large-scale density mode

δR has Gaussian distribution. Averaging over vbc and δR we obtain global-averaged quantities

which allows us to statistically account for all the rare fluctuations in overdensity and velocity

in the sky.

We begin our discussion of the global properties of distribution of stars by going over the

results reported in [23] and recalculating some of them. We show in fig. 3.3 the redshift evolution

of the globally averaged gas fraction in star-forming halos or in star-less halos. Compared with
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Figure 3.3: The global mean gas fraction in star-forming halos (solid curves)
and in star-less halos, i.e., halos below the cooling threshold (dashed curves).
The results, based on our optimal fit (eq. 3.1.4) are shown after averaging
over the distribution of relative velocity (thick curves), or in the case of no
relative motion, i.e., for vbc(z) = 0 (thin curves).

fig. 8 of [23], our gas fractions are substantially lower, e.g., the gas fraction in halos above

the minimum cooling mass is lower by a factor of ∼ 3 at redshift z = 20 with a spread of

±7% for different fits. The lower gas fraction is due to our higher Mcool and lower power

spectrum normalization. Note that the gas fraction in halos above the minimum cooling mass

is proportional to the stellar mass density, assuming a fixed star formation efficiency (averaged

over each 3 Mpc patch).

In general, the importance of the relative velocities increases with redshift. Comparing the

two categories of halos, we find that the relative suppression of the minihalos is larger than that

of the star-forming halos at low redshift; however, the relative suppression of the star-forming

halos increases faster with redshift, and eventually it becomes larger than that of the minihalos

(beyond z ∼ 50). At z = 20, the bulk velocities reduce the mean gas fraction in star-forming

halos by a factor of 1.8 and that in minihalos by 3.1.

In our calculations relative velocities produces three distinct effects (3.2.5): suppression of

the halo abundance (dn/dM), suppression of the gas content within each halo (fg(M)), and

boosting of the minimal cooling mass (through Vcool(z)). Naturally, the effects are linked as

they have a common origin, i.e., the same streaming velocity. However they enter independently

into the expression for the gas fraction. In order to gain a better physical understanding, and

for easier comparison with previous works, we investigate the relative importance of each effect

in fig. 3.4. For star-forming halos, the suppression of gas content is always the least significant
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Figure 3.4: The ratio (compared to the vbc = 0 case) by which the bulk
velocities change the global mean gas fraction in halos above the cooling
mass (Left panel) and in star-less minihalos (Right panel). We consider four
different cases: the full effect of the velocities (thick solid curves); the effect
of vbc in boosting the cooling mass only (dashed curves); the effect of vbc in
suppressing the halo abundance only (dotted curves); and the effect of vbc
in suppressing the gas fraction only (thin solid curves).

effect (e.g., on its own it leads to suppression by a factor of 1.13 at z = 20), while the cooling

mass boost becomes the most important effect above z = 28.5 (on its own it causes a suppression

by a factor of 1.26 at z = 20), and the halo abundance cut is most important at lower redshifts

(on its own it suppress star formation by a factor of 1.43 at z = 20). For the star-less halos, the

boosting of the minimum cooling mass acts as a (small) positive effect, since it moves gas from

the star-forming to the star-less category (e.g., boost by a factor of 1.10 on its own at z = 20),

while the other two effects are larger and comparable (e.g., at z = 20 the suppression of gas

content would give a reduction by a factor of 2.17 on its own, and the halo abundance cut would

give a suppression factor of 1.74).

3.2.3 Spatial Distribution. Effect of Relative Velocities

The gas fractions shown in fig. 3.3 and 3.4 are global averages. However, in reality the Universe

looks highly inhomogeneous on small cosmological scales. We can thus divide it into patches that

have various bulk velocities and large-scale densities. In this section we look at the contribution of

velocity fluctuations to fluctuations in the gas fraction in halos, averaging the density fluctuations

out.

Consider the contributions of patches of various velocities to the total amount of star for-

mation. At a given redshift, the gas fraction in star-forming halos is lower in the patches with
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a high value of the relative velocity, because all three velocity effects mentioned above tend to

reduce this gas fraction. On the other hand, patches with zero bulk velocity do not contribute

much, simply because they are rare. As shown in the left panel of fig. 3.5, the most common

bulk velocity is vbc ∼ 0.82σbc, where vbc and σbc are both measured at the same redshift (recom-

bination or any other z). If the stellar density were independent of the bulk velocity, then the

contribution of regions of various velocities would be proportional to the velocity PDF. Instead,

the velocity suppression effect shifts the contribution to stellar density (assumed proportional to

the gas fraction in star-forming halos) towards lower vbc, with the relative change (compared to

the Maxwell-Boltzmann distribution) increasing strongly with redshift. Thus, the biggest con-

tribution to stellar density comes from vbc = 0.67σbc patches at z = 20, and from vbc = 0.23σbc

patches at z = 60. We compare the contributions of the three distinct effects of the velocity

to the shift in the distribution of star formation (fig. 3.5, right panel). As in the left panel

of fig. 3.4, we find that the suppression of halo gas content has the least significant effect on

star-forming halos at z = 20 (typically, a ∼ 10% effect on the distribution), while the other two

effects (suppression of the halo abundance and the boost of the minimal cooling mass) have a

∼ 20− 30% effect each.

Thus, at the highest redshifts, the star formation is concentrated in low-velocity regions which

are rare, i.e., at the low-probability vbc end of the Maxwell-Boltzmann distribution function. The

universe at these epochs is very inhomogeneous, with a few bright regions filled with stars, while

in all other regions the relative velocity is too high to allow significant star formation. As

the universe expands, the relative velocity decays, and in more and more patches across the

universe the relative velocity drops enough to allow for star formation. As a result, the stellar

distribution becomes increasingly homogeneous. To quantify the degree of inhomogeneity caused

by the dependence of stellar density on the bulk velocity, we plot the fraction of the volume of

the universe (at lowest velocity, i.e., at highest stellar density) that contains 68% or 95% of the

star-forming halos (fig. 3.6). The effect of volume concentration is mild at z = 20 (68% of the

stars are in 54% of the volume, and 95% in 89% of the volume), while it becomes very strong

at z = 60 (68% of stars in 4.6% of the volume, and 95% in 16% of the volume).
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Figure 3.5: Left: The relative contribution of regions with a given stream-
ing velocity to the global gas fraction in halos above the cooling mass, i.e.,
dfgas(> Mcool)/dvbc normalized to an area of unity. The dependence is
shown for z = 60 (solid curve) and z = 20 (dashed curve). We also show the
Maxwell-Boltzmann distribution of the bulk velocity (dotted curve). The
velocity is expressed in units of its root-mean-square value σbc. Right: The
ratio at z = 20 between the quantity shown in the left panel (the relative
contribution of regions with a given streaming velocity to the gas fraction
in star-forming halos) and the Maxwell-Boltzmann distribution. If star for-
mation were independent of bulk velocity, this ratio would equal unity. We
consider this ratio for the same four cases as in fig. 3.4: the full velocity effect
(thick solid curve), the boost in the cooling mass only (dashed curve), the
suppression of the halo abundance only (dotted curve), and the suppression
of the gas fraction only (thin solid curve).

3.2.4 Joint Effect of Velocity and Density Fluctuations

In order to quantify the full degree of inhomogeneity and concentration of primordial star for-

mation, we must include the effect of large-scale density fluctuations in addition to the variation

in vbc. In this section we thus consider the full PDF of the halo gas fraction within 3 Mpc

patches, where the fluctuations result from a combination of the relative velocity distribution

considered in the previous section and density fluctuations. Specifically, the average density in

a patch varies due to fluctuations on scales larger than its size. This average density follows a

Gaussian distribution and is independent of the relative velocity within the same patch.

To find the modified halo mass function within a patch of a given overdensity δR and bulk

velocity vbc, we use the hybrid prescription (which combines the [38] mass function with the

extended Press-Schechter model) introduced by [39] and generalized by [23] to include vbc. The

dependence of the gas fraction in halos above the cooling mass on the two independent variables,

each measured in terms of its root-mean-square value, is illustrated in fig. 3.7. The dependence
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Figure 3.6: The fractional volume of the universe that contains 68% (dashed
curve) or 95% (solid curve) of the star-forming halos as a function of red-
shift, where we consider just the contribution of velocity fluctuations to the
inhomogeneity of star formation on 3 Mpc scales.

on both δR and vbc is stronger at higher redshifts. At a given redshift, the dependence on δR is

stronger (i.e., the slope is higher) when vbc is higher, since in this case the large halos (above

the high cooling mass) are rarer and their abundance is more sensitive to the overdensity of

the patch. If we consider the total range between 0 and 2 σ, we find that density and velocity

fluctuations make comparable contributions to the star-formation fluctuations on the 3 Mpc

scale. The relative importance of velocities increases with redshift and it also increases if larger

scales are considered. Even at a relatively low redshift (e.g., z = 20) relative velocities cause

order unity fluctuations in the stellar density, and these fluctuations are expected be present at

the large (100 Mpc) scales spanned by the velocity correlations.

The resulting full PDF of the halo gas fraction is shown in fig. 3.8 (left panel), both for

the star-forming halos, and the star-less halos. The main effect of the bulk velocities is to shift

the distributions towards lower gas fractions. At redshift 20, the effect is larger on the light

halos that do not form stars. In fig. 3.8 (right panel) we show the fraction of the volume of the

universe (at the high gas fraction end of the full PDF) that contains 68% or 95% of the stars,

with and without the velocity effect.

The volume concentration of star formation is a result of a complex interplay of the two

sources of fluctuations. The global star formation is highest in the rare regions with both

low bulk velocity and high overdensity, but more generally, one of these can compensate for

the other. The effect of vbc on star-forming halos vanishes by z ∼ 10, in agreement with our
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Figure 3.7: The percentage of gas fraction in star-forming halos at redshifts
z = 20 (thick curves) and z = 40 (thin curves) as a function of the average
overdensity δR in the 3 Mpc patch (normalized by its root-mean-square value
σR), for various values of the relative velocity: no relative motion (dashed),
vbc = σbc (solid) and vbc = 2σbc (dotted).

previous results, leaving just the effect of the local density. Even at somewhat higher redshifts

(up to z ∼ 35), the concentrating effect of the velocities on their own (fig. 3.6) remains weaker

than that of the densities alone (no-velocity case in fig. 3.8), so at these redshifts the full case

is dominated by the densities, and the concentrating effect of density is enhanced by including

the velocities (which steepen the dependence on density: fig. 3.7). At redshifts above ∼ 35,

velocities dominate, and then addition of the density fluctuations (compared to averaging over

them at each velocity) actually reduces the concentration, since it allows low-velocity regions to

contribute relatively more volume with high gas fractions (due to the steeper density dependence

at high bulk velocity).

Specifically, at z = 20, density fluctuations alone (i.e., setting vbc = 0) would concentrate

68% of the stars into 39% of the fractional volume of the Universe and 95% of the stars into

81% of the volume. Addition of the bulk velocity provides a mildly increased concentration:

now 68% of the stars are in 35% of the volume and 95% of the stars in 77% of the volume. As

anticipated, the concentration is stronger at higher redshifts, e.g., at redshift z = 60 68% of the

stars are in 11% of the volume and 95% of the stars in 45% of the volume, compared to 14%

and 52% of the volume, respectively, at zero bulk velocity. The effect of the velocities should be

more clearly apparent on scales larger than our 3 Mpc pixels. For instance, in addition to the

small increase in concentration that the velocities cause (as seen in fig. 3.8), their effect is to

redistribute the star-forming sites and to produce larger coherent regions of either high or low
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Figure 3.8: Left: The full probability distribution function (PDF) of the
gas fraction at redshift z = 20. We show the PDF of the gas fraction in halos
above the cooling mass (solid curves) and the PDF of the gas fraction in
star-less halos (dashed curves). We consider two cases: randomly distributed
vbc and δR (thick curves), and vbc = 0 but random δR (thin curves). Right:
The fractional volume of the universe that contains 68% (dashed curves)
and 95% (solid curves) of the star forming halos, where we consider the full
PDF in 3 Mpc patches. In each case, the relative motion is included (thick
curves) or not (vbc = 0, thin curves).

star formation.

We note that the assumption that the local overdensity on large scales δR and the streaming

velocity vbc are statistically independent is not perfectly accurate. A patch with a high local

overdensity has expanded less than other patches, so that the peculiar velocity vbc has not

declined as much compared to the expansion. Indeed, we expect vbc to be replaced by vbc(1 +

δR/3). However, we have found that this correction introduces only a small difference in the

PDF (up to a 4% relative error at z = 60, and less at lower redshifts).

3.2.5 Redshift of the First Star

In the previous sections we have discussed the conditions needed to initiate star formation and

we have seen that the main one is that the halo mass must be large enough to allow molecular

cooling. Given a large enough initial density fluctuation, a halo with a sufficiently large mass

will form relatively early. The very first stars depend on extremely rare fluctuations, hence we

need to average over the volume of the observable universe, (14 Gpc)3, in order to have the full

statistical range needed to accurately estimate the formation time of the first star.

Due to computational limitations, numerical simulations can be used to describe the forma-

tion of a star only in a very limited cosmological context. For instance, in [21] star formation
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was studied in a (500 kpc)3 volume and in [22] the authors were limited to a (100 h−1kpc)3

volume. In a small volume the chance of getting a rare high density fluctuation is quite small,

therefore the formation redshift of the first stars in simulations is greatly underestimated, with

most simulations forming their first star below redshift 30 (i.e. when the universe was at least

100 Million years old). The highest redshift where a star has formed in a simulation is z = 47

(∼ 53 Myr after the Big Bang) [76].

Authors of [97] first applied these statistical considerations in order to analytically predict

the redshift of the first observable star (i.e., in our past light cone). Their estimated redshift of

the first star turns out to be z = 65 (i.e. when the universe was only 32.9 Myr old), using the

3-year WMAP set of cosmological parameters [98] and assuming a minimum circular velocity for

cooling of Vcool = 4.5 km sec−1. In this section we generalize their method in order to account

for the bulk velocities and estimate their impact on the epoch of the first star formation. This

problem is particularly relevant since the effect of the relative velocity on star formation increases

with redshift, and is thus at its maximum when we consider the very first star. We also study

the sensitivity of the calculated first-star redshift to various sources of uncertainties.

Following [97], we calculate the mean expected number ⟨N(> z)⟩ of star-forming halos that

formed at redshift z or higher, but where the halo abundance is now averaged over the bulk

velocity distribution at each redshift. This number is the ensemble-averaged number of stars,

but we have only one universe to observe. Hence, we expect Poisson fluctuations in the actual

observed numbers. The probability of finding at least one star is then 1− exp [−⟨N(> z)⟩], and

(with a minus sign) the redshift derivative of this gives the probability distribution p∗(z), where

the probability of finding the first star between z and z + dz is p∗(z)dz.

As shown in fig. 3.9 (left panel), we find that in the absence of the bulk velocities, the first star

would be most likely to form at z = 69.9, with a median z = 70.3 (corresponding to t = 29.3 Myr

after the Big Bang). The difference with [97] is due to the changes in the cosmological parameters

between WMAP3 [98] and WMAP7 [99] which we used here, specifically the increased power on

the relevant scales (since the increased spectral index has a larger effect than the reduced σ8),

and the decreased cooling mass in the vbc = 0 case compared to the value assumed by [97].

The relative velocity effect delays star formation: for the very first star we find a delay of

∆z = 5.3 (i.e. by ∆t = 3.6 Myr), in consistency with the delays found e.g. in [21] for three

separate halos. The first star is now most likely to form at z = 64.6, with a median z = 65.0
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Figure 3.9: Left: The impact of the relative velocity on the redshift of
the very first observable star. We plot the probability density of seeing the
first star at a given redshift, including the effect of relative velocity for our
optimal fit (solid curve), or without the effect of the velocity (i.e., for the
same fit but with vbc = 0, dotted curve). The formation of the first star is
delayed by ∆z = 5.3 (∆t = 3.6 Myr) due to the relative velocity effect. We
mark the median redshift of the first star for each distribution (•), which is
z = 65.0 (corresponding to t = 32.9 Myr) in the case of the optimal fit to
the SPH simulations and z = 70.3, (t = 29.3) Myr in the no-velocity case.
Right: The probability density of the redshift of the first star calculated
for the fits of fig. 3.1 and 3.2. The median redshifts of the first star (from
left to right) are: z = 63.5 (fit adopted to the AMR simulations), z = 64.3
(fit to [21]), z = 65.0 (the optimal fit to the SPH simulations) and z = 65.8
(fit to [22]).

(corresponding to t = 32.9 Myr), and with a 1−σ (68%) confidence range z = 63.9−66.5 due to

the Poisson fluctuations. In addition, the redshift of the first star is uncertain due to the current

errors in the cosmological parameters and the uncertainty in the cooling mass. Regarding the

cosmological parameters, the redshift of the first star is sensitive to the amount of power on

the scale of the first halos. The uncertainly of WMAP7 [99] in the amplitude of the primordial

fluctuations (parameterized by σ8) is ∆σ8 = ±0.024, which implies (for our optimal fit) an

uncertainty of ∆z = ±2.2 in the median redshift of the first star. The larger is σ8, the earlier

will the first star form. More generally, we include the current correlated errors in the full suite

of standard cosmological parameters, and find a resulting ∆z = ±5.1.

In order to estimate the impact of the current uncertainty in the effect of the bulk velocity on

the minimum cooling mass, we estimate the redshift of the first star for each of the fits discussed

earlier. We find (fig. 3.9 right panel) that the range of the uncertainties in SPH simulations

corresponds to a ∆z of 1.5, and that the discrepancy between the AMR and SPH simulations
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is comparable. We conclude that the bulk motion causes a substantial delay in star formation,

which is model dependent and, thus, is still significantly uncertain. In summary, we find the

median redshift of the first star in our observable universe to be

z = 65.0+1.5
−1.1(Poisson)

+0.8
−1.5(simulations)± 5.1(cosmology) , (3.2.6)

or, equivalently,

t = 32.9+0.8
−1.1(Poisson)

+1.1
−0.6(simulations)+4.2

−3.5(cosmology) Million years

after the Big Bang. Thus, current uncertainties in the values of the cosmological parameters

dominate over the differences in the simulations and the irreducible Poisson fluctuations.

3.3 Discussion

To make the novelty of our work [24] clear, we now make a full comparison of the ingredients

of our calculations with those in the previous literature. We start considering [19], where the

importance of relative velocities was first discovered. There the authors only calculated the

impact of the velocities on the halo abundance, but this was sufficient for them to deduce

implications on large-scale fluctuations. However, their calculations had a number of simplifying

assumptions: they calculated the baryon perturbations under the approximation of a uniform

sound speed, and used the old Press-Schechter halo mass function.

Next paper in the field, [20], was the first to point out the effect of relative velocities on sup-

pressing the gas content of halos. However, there were a number of simplifying approximations

made in this paper as well which we have relaxed here. These include:

1. We have calculated the filtering mass (MF ) from linear theory, while they took the effective

value found in simulations in the standard (no relative velocity) case, and then multiplied

it by a simple vbc-dependent ansatz. This ansatz assumes that the bulk kinetic energy

is completely converted into thermal energy when gas collapses. In our work we did not

assume complete thermalization rather used a different approach, calibrating the velocity

effect to the results of small-scale numerical simulations.
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2. We have allowed for a smooth transition between gas-rich halos at M ≫MF and gas-poor

halos at M ≪ MF as is suggested by simulations, rather than applying a step-function

cutoff.

3. We have simultaneously included the dependence of the gas fraction in halos on the large-

scale matter overdensity δR and relative velocity vbc. This combines both the “traditional”

biasing model (which includes δR but not vbc) and the approach taken in [20], which

includes vbc but not δR. We found that both effects are important.

4. We included the effect of vbc on the halo mass function [19], which [20] did not.

5. Most importantly, we incorporated a cooling criterion for star formation, rather than

scaling by the total gas content in halos. The vast majority of gas is in star-less halos that

cannot cool, and because of their low circular velocities their ability to collect baryons is

much more affected by vbc than the star-forming halos. This suggests that the effect of

relative velocities on early star formation might be less than found by [20]. However, we

find that the inclusion of the other effects (mass function and cooling threshold, in addition

to baryon fraction) does restore the expectation for order unity fluctuations, with exciting

implications for observational 21-cm cosmology, discussed in the next chapter.

In part of the above discussion we closely followed [23]. However, we included the new effect

on the cooling mass based on simulations to extend the calculations to the highest redshifts of

star formation, and to quantify the degree of concentration of star-forming halos. We carefully

studied the relative importance of the three separate effects (suppression of gas content, sup-

pression of the halo abundance and the effect on the minimal cooling mass) of the bulk velocity

now on star formation. Finally, we fixed two inaccuracies in the power spectrum used in [23]

(in the normalization and the spectral slope) that gave substantially too much power on small

scales.

One of the main conclusions of this chapter is that the primordial sky was even more non-

homogenous at large scales than was previously thought. Primordial star formation was biased

by both large-scale density modes and coherent relative velocities which enhanced the BAO

signature in the distribution of stars. Naturally we expect the non-homogeneity of the first stars

to be inherited by the radiative backgrounds which they emit, and which couple to the 21-cm
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signal of neutral hydrogen at high redshifts. We discuss the impact of vbc on the redshifted

21-cm signal in chapter 4.
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Chapter 4

Observable Signature of Primordial

Stars

In this Chapter, partially based on the papers E. Visbal, R. Barkana, A. Fialkov, D. Tseli-

akhovich and C. M. Hirata (2012) [28], A. Fialkov, R. Barkana, E. Visbal, D. Tseliakhovich

and C. M. Hirata (2012) [29] and A. Fialkov, R. Barkana, A. Pinhas, E. Visbal (2013) [30], we

discuss the signature of the first stars in the redshifted 21-cm signal.

Rare first stars start to form when the Universe is only ∼ 35 Million years old (around

redshift z ∼ 65). At that time the Universe is mostly filled with cold neutral gas and the only

radiative background existing is the CMB. The picture changes dramatically as population of

stars grows: they emit radiation which alters the appearance of the Universe by heating and

ionizing the gas and destroying molecular hydrogen (the main construction material in the early

Universe out of which the stars form). In addition, radiation couples the temperature of the

gas to the 21-cm line of neutral hydrogen (as we discussed in chapter 2). Firstly, the radiative

field is very inhomogeneous, existing only around the rare bright sources. However gradually it

fills the entire space, due to both creation of new sources and propagation of the photons from

earlier formed stars and the radiative backgrounds (Lyα, Lyman-Werner, X-ray and, probably,

IR) build up. The radiative backgrounds do inherit strong large-scale fluctuations of the high-

redshift sources; however the fluctuations are smoothed on small scales due to the fact that the

local intensity is a superposition of photons emitted by all the sources within effective horizon

(which depends on the type of the radiative background), where the intensity of radiation by
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each emitter is modulated by astrophysical and cosmological effects such as redshift, time delay

and optical depth.

Interestingly enough, this picture of the primordial star formation can be verified using the

21-cm emission line of neutral hydrogen, which couples to the temperature of the gas, as was

discussed in chapter 2. The global evolution of the redshifted 21-cm signal, as well as of its power

spectrum from each redshift, depends on the astrophysical and cosmological parameters such as

density, relative velocities, gas temperature, neutral fraction (mainly at the low redshifts z < 10

when the starlight re-ionize large volumes of gas) and intensity of the radiative backgrounds.

Therefore detecting the 21-cm signal from high redshifts would help us to constrain the early

Universe. Current state of art experiments are designed detect the 21-cm signal from the Epoch

of Reionization, redshifts z ∼ 7− 11, since this redshift range is thought to be more convenient

for observations than the pre-reionization era due to larger noises at higher redshifts. However,

recent theoretical developments [20,28,29] have shown that the 21-cm sinal from high redshifts

should be strong enough to be detected even with present day observational technology, e.g., by

experiments similar to MWA [106] and LOFAR [107]. As was first shown in [20], the supersonic

relative motion between dark matter and gas (section 3.1) enhances the expected 21-cm signal

by imprinting fluctuations of an amplitude 5 mK2 with a clear BAO signature in the signal

at redshift z = 20. However the authors of this paper accounted only for fluctuations in the

Lyα radiative background, assuming a particularly low efficiency (which explains high Lyα

fluctuations at such a low redshift).

In this chapter we explore the redshifted 21-cm signal from the pre-reionization epoch and

estimate prospects for its detection, accounting for the inhomogeneous heating of the gas by X-

rays. Fluctuations in X-rays should be one of the main sources of the fluctuations in the 21-cm

signal at the epoch when the gas heats up above the temperature of the CMB, around z ∼ 20.

In addition, we include fluctuations in the large-scale density modes and in supersonic relative

velocities [28], as well as account for the complex astrophysical processes relevant for the early

epoch. In particular, we add for the first time a detailed three-dimensional calculation of the

inhomogeneous Lyman-Werner radiative background [29], which dissociate hydrogen molecules

thus acting as a inhomogeneous negative feedback to star formation. Although relative timing

of the three radiative backgrounds has not been yet constrained and is one of the subjects of

current study, fluctuations in the Lyα radiative backgrounds (assuming its standard efficiency
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as in [64]) are expected to be important at higher redshifts, around z ∼ 25− 30, and should be

saturated around redshift 20, as we confirm in our work in progress [30]. Therefore, it is safe to

assume that the main role of the Lyα background at z ∼ 20 is to couple the spin temperature

to the gas kinetic temperature, leading to TS = TK , without seeding fluctuations in the 21-

cm background and having an impact on its power spectrum. We apply hybrid computational

methods, discussed in section 4.1, to make predictions for the large-scale 21-cm signal from high

redshifts and quote the results of the calculation in section 4.2. We summarize and discuss our

main results in section 4.3.

4.1 Hybrid Methods

Next-generation 21-cm experiments such as SKA, LEDA, and DARE will focus on the 21-cm

signal from high redshifts z ∼ 10 − 30. These experiments will measure the 21-cm brightness

temperature on large scales, corresponding to the field of view of tens deg2. Interpreting data

of these experiments will be challenging due to the poor modeling of the high-redshift Universe,

which involves a wide range of scales. To make predictions for the expected 21-cm signal from

the high redshifts we need to resolve both the large scales corresponding to the field of view of

the experiments (∼ 1000 Mpc at high redshifts) and the small scales limited by the resolution

of the experiments (∼ 0.14 Mpc [100]).

Although small-scale numerical simulations can model the early Universe starting form first

principles, including atomic physics and chemistry and modeling star formation and radiative

transfer, they can reconstruct only a very limited volume of space. As was discussed in chap-

ter 3, small volumes appear to be very non-representative when the high-redshift Universe is

considered, which implies that we cannot make generic conclusions about the expected 21-cm

signal based on the results of these simulations only. On the other hand, analytical calculations,

which are not limited at large linear scales, fail to describe small-scale non-linear processes, such

as star formation. Therefore, to generate the expected signal from the high-redshift domain, we

must use alternative computational methods, which combine both analytical tools to describe

the linear evolution on large scales, and the results of non-linear numerical simulations and sta-

tistical methods to model the small-scale. Such semi-numerical approach, which is a compromise

between the precise but costly simulations and qualitative analytical estimates, is used to model
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Figure 4.1: A two-dimensional slice of our simulated volume. Left: The
relative fluctuation in density at redshift z = 20. Right: The magnitude
of relative velocities between baryons and dark matter shown in units of its
root-mean-square.

the EoR as well as the Universe at higher redshifts (e.g., in [60,100] and references within), and

is the only tool at hand that can generate realistic 21-cm signal on large scales. In the following

we outline the details of the hybrid method applied in the current study.

First, we produce realistic samples of the early Universe at recombination within cubes of

volume of ∼ (400 Mpc)3 and with spatial resolution of ∼ (3 Mpc)3. On the one hand, the

choice of the pixel size implies that we do not resolve physics on smaller scales and are forced to

apply statistical considerations on scales smaller then 3 Mpc, exactly as we did in the previous

chapter; on the other hand, such a resolution allows us to explore large physical volumes needed

to understand the large-scale fluctuations in the 21-cm signal. We randomly generate large-scale

density δR and relative velocity vbc modes within each pixel of 3 Mpc and evolve them linearly

in time 1. While generating δR and vbc we account for correlations between the density and the

velocity fields which are related via the continuity equation δ̇R+∇vbc = 0. To produce the fields

we use standard initial conditions for primordial power spectra (e.g., from slow roll inflation)

where the density and the velocity are Gaussian random fields. An example of such a realistic

realization of the density (left panel) and the velocity (right panel) fields generated by our code

are shown on the fig. 4.1.

Second, at each redshift 10 ≤ z ≤ 60 we estimate (using statistical methods and results of

1Note that the root-mean-square of δR in a (∼ 400 Mpc)3 box reaches σδ = 0.25 at redshift z ∼ 10, which is
well within the linear regime, and at this redshift only 0.005 per cents of our pixels reach |δ| = 1, showing that
even at z ∼ 10 the linearity of the density field on 3 Mpc scales is a good approximation.
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small-scale numerical simulations) the stellar content and the local radiative backgrounds of each

pixel. To this end we use a “library” (which we first create using the same methods, as described

in the previous chapter) of the values of the gas fraction in star-forming halos within a pixel for

each halo mass M , and given values of z, vbc, δR and JLW , the Lyman-Werner intensity, of the

pixel (where we run over the values of M , vbc, δR, JLW and z). Then we use the pre-calculated

data to estimate the amount of gas in stars within each pixel at every redshift, using the actual

values of vbc, δR, and JLW . As in section 3.1.2, we assume that stars form in halos of masses

higher than the minimal cooling mass, which depends on the local value of vbc and JLW
2, as we

discuss further in section 4.1.1.

It is worth noting that in our simulation the fraction of gas in stars, denoted by fstellar, is

related to the gas fraction in star-forming halos via the star formation efficiency, f∗. In [28]

we used a constant star formation efficiency (which is a common assumption, e.g., [60]) of 10

percent; however in our code in [29] we incorporated a gradual low-mass cutoff (rather than

a sharp cutoff) at Mcool, motivated by the results of a numerical simulation [101]. Since the

cooling rate declines smoothly with virial temperature (and thus with the halo mass), a smooth

cutoff is expected physically, and indeed, the authors of [101] found that the fraction of highly-

cooled, dense gas in their simulated halos ofM ∼ 106 M⊙ is well described as being proportional

to log(M/Mcool). Since this is the gas that can participate in star formation, we incorporate

this by generalizing the star-formation efficiency to include a dependence on halo mass, f∗(M),

assuming our standard efficiency of f∗ = 10% for star formation in large halos of M ≥ Matomic

via atomic cooling, where Matomic is the minimum mass for atomic cooling (∼ 3× 107 M⊙ but

z-dependent). In order for f∗(M) to be a continuous function, we thus set

f∗(M) =


f∗ if M ≥Matomic

f∗
log(M/Mcool)

log(Matomic/Mcool)
if Mcool < M < Matomic

0 otherwise.

(4.1.1)

As is shown in fig. 4.2 (left panel), the standard assumption of constant f∗ makes halos with

masses nearMcool dominate the cosmic star formation rate, particularly at the highest redshifts.

2In fact, as we discuss in the following, amount of stars in each pixel depends on the history of the local LW
background and not on its actual value. Since radiative backgrounds build up with star formation, they vanish
at very high redshifts which allows us to calculate Mcool at the initial steps of our simulation, assuming vanishing
LW intensity.
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Figure 4.2: Star-formation contribution and effect of velocities versus halo
mass (feedback not included). Left: The logarithmic contribution of each
halo mass to the total fraction of gas in stars (i.e., dfstellar/d log(M) av-
eraged over the distribution of vbc), including the log(M) modulation in
eq. 4.1.1 (solid) or with the standard assumption of a fixed efficiency with
mass (dashed). We consider z = 13.6 (red), z = 19.6 (green), and z = 25.6
(blue). Right: The ratio of the cosmic mean stellar fraction with vbc to the
value without the velocity effect, i.e., < fstellar(M,vbc) >vbc /fstellar(M, 0).
We include eq. 4.1.1, and consider the same redshifts as in the left panel.

Our more realistic model significantly reduces the overall star formation rate (by a factor of 2.0

in the example shown at z = 19.6) and shifts the peak of the contribution to star formation to a

higher mass (8.7×Mcool at z = 19.6). Also shown in the figure (right panel) is the overall effect

of the relative velocity vbc broken down by mass. Since the velocity effect on halos is made up of

three distinct effects, with two of them dominant [24], the dependence on halo mass shows two

separate regimes. Near the cooling mass (and up to a factor of ∼ 2 above it), the velocity effect

is very strong and also strongly dependent onM , mainly due to the boosting of the cooling mass

in regions with a high vbc. At higher masses, however, the velocity effect is weaker and only

changes rather slowly with halo mass, mainly due to the suppression of the halo abundance.

A small but non-negligible effect remains even well above Matomic. Since the velocity effect is

strongest at the low-mass end (right panel), the shifting of the star formation towards higher

masses (left panel) reduces somewhat the overall influence of the supersonic streaming velocities.

Since, as we show in the following section, the Lyman-Werner feedback also affects low masses

first, the log(M) modulation delays the Lyman-Werner feedback.

Examples of the outputs of our simulation are shown on fig. 4.3, where we plot the normalized

distribution of star-forming halos at redshifts z = 20 (top row) and z = 40 (bottom row) with

vbc (right panel) and without vbc (left panel) for the same set of initial conditions as in fig. 4.1.
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Figure 4.3: Two-dimensional slices of the gas fraction in star forming halos
without (Left) and with (Right) vbc at z = 20 (Top) and z = 40 (Bottom).
The plots show the logarithm of the fraction normalized by its mean value:
< fgas >= 0.002 (top left), < fgas >= 0.0001 (top right), < fgas >=
5.7× 10−8 (bottom left), < fgas >= 7.6× 10−9 (bottom right).

As we can see from the maps, the gas fraction in a model universe without the streaming motion

is biased only by the density fluctuations, whereas in a universe in which these velocities exist

(like in ours) the gas fraction in star-forming halos is biased by both the density and the velocity

fields. The visible features on scales of ∼ 100 Mpc, imprinted by the velocity field, are more

remarkable at higher redshifts (compare bottom row of fig. 4.3 versus its top row), since the

effect of relative velocities lessens with time.

Third, we use the simulated star formation rate to determine the X-ray heating rate and the

Lyman-Werner intensity in each pixel at each redshift. Before star formation begins (around

redshift 60 [24]) the radiative backgrounds vanish, which allows us to set the initial conditions for

the time-dependent radiative fields. Next, at each redshift we divide the space around each pixel

into shells, smooth the stellar density field in the shells by filtering it with two position-space
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top-hat windows of different radii, and subtract the results. This allows us to calculate the star

formation rate in each shell at each redshift. Then we use relations 2.4.27 and 2.4.2 to calculate

the flux of both the X-rays and the Lyman-Werner photons within each pixel, accounting for

time delay (i.e. photons which arrive from a shell located at zs were emitted by the population

of sources at zs), redshift and the optical depth. (In fact, intensity of the radiative backgrounds

at za depends on the history of star formation rate in each shell due to the time delay effect and

not on its current value in the pixel. This is exactly what allows us to incorporate the negative

Lyman Werner feedback, as we discuss in the following). Finally, we add up contributions from

each shell to obtain total intensities, assuming periodic boundary conditions.

Each radiative background has its own effective horizon, i.e. the maximal radius from which

stellar emission can contribute to the flux at the central pixel. Typically the horizons are of

the order of magnitude of ∼ 100 Mpc [60, 63, 68]. The effective horizon of the Lyman-Werner

background depends on the properties of the intergalactic gas. The Lyman-Werner photons

emitted by each source are absorbed by hydrogen atoms as soon as they redshift into one of

the Lyman lines of the hydrogen atom. Moreover, whenever they hit a Lyman-Werner line

along the way, they may cause a dissociation of molecular hydrogen. Although some previous

papers [63,68] assumed a flat stellar spectrum in the Lyman-Werner region and a flat absorption

profile over the Lyman-Werner frequency range, in our calculation we incorporate the expected

stellar spectrum of Population III stars from [64] (based on [102]), which varies in the Lyman-

Werner region typically by a few percent but up to 17 percent. More importantly, we explicitly

include the full list of 76 relevant Lyman-Werner lines from [56]. We summarize the results

with fLW, the relative effectiveness of causing H2 dissociation via stellar radiation. Specifically

it is the ratio between the dissociation rate of molecular hydrogen and the naive total stellar

flux (i.e., calculated without any absorption and integrated over all wavelengths), normalized to

unity in the limit of zero source-absorber distance. This quantity is simply a function of source-

absorber distance at each redshift under the simplifying assumption of a universe at the mean

density. This assumption follows the approach for X-rays taken in 21CMFAST, [60], and should

be sufficiently accurate since the strong bias of star-forming halos at these high redshifts implies

that fluctuations in star formation (which drive the 21-cm fluctuations) are much larger than

the fluctuations in the underlying density. Thus, given our assumed stellar spectrum we can pre-

calculate fLW and include this as an effective optical depth that is spherically symmetric around
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Figure 4.4: The relative effectiveness of causing H2 dissociation in an ab-
sorber at za due to stellar radiation from a source at zs, shown versus the
ratio R ≡ (1+zs)/(1+za) (solid). For comparison we show fmod, a commonly
used approximation from [63] (dashed). Both functions are normalized to
unity at R = 1. (There was also a 1.45% normalization difference after
we carefully normalized as in [101], since we use their results for the LW
feedback.)

each source. Figure 4.4 shows fLW versus the absorber-source distance; we parameterize this

distance in terms of the absorber-source scale-factor ratio R, since fLW versus R is independent

of redshift. Beyond the maximal shown R = 1.054 (which corresponds to 104 comoving Mpc at

z = 20 and which defines the effective horizon for Lyman-Werner photons), fLW immediately

drops by five orders of magnitude. The figure shows that Lyman-Werner absorption is poorly

approximated as being uniform in frequency. In reality, emission from distant sources is absorbed

more weakly. The accurate fLW reduces the overall Lyman-Werner intensity by ∼ 20% (thus

delaying the LW feedback), and makes it more short-range and variable.

Emissivity of the first stars, another parameter of our model, is relatively well modeled in

simulations [102] and well-fitted by piece-wise power-law spectrum [64]. For example, according

to these models, a Population III star emits 4800 photons per baryon between Lyα and Ly-

limit. On the contrary, sources of X-ray photons that heat the intergalactic medium at high

redshifts are still very uncertain and can be either quasars or galaxies, or even an exotic heating

mechanism such as dark matter annihilation. Here we assume that the main source of X-rays

is emission associated with star formation in galaxies (e.g., from X-ray binaries and hot gas).

We normalize the ratio of X-ray emission to SFR based on locally observed starburst galaxies

(which is a common practice, e.g. [49]). We treat it in a conventional way by assuming the

X-ray luminosity to be a power-law L ∝ (ν/ν0)
−α, with α = 1.5, and normalize the luminosity
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to yield X-ray photon efficiency of 1057M−1
⊙ , which roughly corresponds to one X-ray photon

per stellar baryon, [60]3. In the case of the X-rays emitted by these sources, most of the photons

are absorbed close to the source while very hard X-rays of large mean free path are rare [69].

As a result, the X-ray radiative background better traces the distribution of sources at small

scales and thus is more concentrated around the star-forming regions than the Lyman-Werner

background, which is more diffused. Note that this assertion is correct only if X-rays have soft

enough spectrum. If the X-ray spectrum is hard, the mean-free-path of the photons is larger

and the fluctuations on small scales are washed out.

Fourth, we use the inhomogeneous X-ray heating rate to find the gas temperature in every

pixel as a function of time, in which we follow [60] and our discussion in chapter 2.

Finally, we can calculate the spin temperature (which, assuming saturated Lyα background4

at z ∼ 20, is simply TS = TK) and find the brightness temperature of the 21-cm signal according

to

δTb ∼ 40 (1 + δ)

(
1 +

TCMB

TK

)(
1 + z

21

)1/2

(4.1.2)

calculated in mK units.

Although in the heating portion of our code we have closely followed [60] and adopted their

fiducial parameters such as X-ray efficiency, our source distribution is substantially different

since they did not include the effect of the streaming velocity as we do in [28] nor the effect

of the negative feedback by the Lyman-Werner photons as we do in [29]. Moreover, since we

consider the era of primordial star formation and focus on z ∼ 20, which is well before the peak

of cosmic reionization expected to be at z ∼ 7− 10, we do not include the ionization of the gas

due to ultra-violet or X-ray radiation. (Note that early pre-reionization may be important in a

scenario which contains supermassive black holes [108–110]. We do not consider this possibility

in this work.)

3In [28], where our main goal was to explore the 21-cm signature from the epoch of heating transition, we
choose to fix the redshift of heating transition to be z = 20. Therefore we selected different X-ray efficiency for
the cases with vbc (1.75× 1057 photons produced above minimum energy of 200 eV per solar mass in stars) and
without vbc (1.15× 1057 photons).

4We explicitly verify this assumption and find that the Lyα coupling is of order unity at much higher redshifts.
For instance, for a model with the redshift of heating transition at zh = 16 we get the Lyα transition at z = 25.5.
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4.1.1 Adding Negative Feedback

One of the main points of our paper [29] is to add the effect of the Lyman-Werner photons which

destroy hydrogen molecules and thus decrease the star formation rate. The formation of the first

stars via cooling of molecular hydrogen is a highly non-linear process that can be mimicked by

numerical simulations, e.g., [74,103]. However, numerical simulations, in which primordial stars

are created, usually do not consider the potentially fatal effect of the Lyman-Werner background

on this process. The negative feedback of the Lyman-Werner background on star formation has

been tested in the limited case of a fixed Lyman-Werner intensity JLW [101, 104, 105]. As the

simulations show, the feedback boosts the minimal cooling mass, Mcool, according to

Mcool (J21, z) =M
cool,0(z)×

[
1 + 6.96 (4πJ21)

0.47
]
, (4.1.3)

where J21 is the Lyman-Werner intensity in 10−21erg s−1cm−2Hz−1sr−1 units5, and M
cool,0(z) is

the value of the minimum cooling mass in the standard case with no Lyman-Werner background.

This result is incomplete for two reasons. One is that it does not account for the relative

velocity vbc, which has a strong impact on the primordial star formation by boosting the mini-

mum cooling mass [21, 22, 24]. To account for the velocity, we change M
cool,0(z) in eq. 4.1.3 to

M
cool,0(z, vbc), using the fit (eq. 3.1.3) to the streaming-velocity simulations which we developed

in [24] (here we use a fit from [24] adopted to AMR simulations, since eq. 4.1.3 was a result of an

AMR simulation). Thus, we combine two separate physical phenomena, i.e., the relative motion

and the Lyman-Werner flux, assuming that they each have a fixed multiplicative effect on the

minimum cooling mass. This simple ansatz for the dependence of M
cool

on the two parameters,

vbc and J21, should be checked by detailed numerical simulation, which we hope to stimulate

with this work. The second incompleteness of eq. 4.1.3 is its validity only in the case of a fixed

background intensity during the formation of the halo, whereas in reality the Lyman-Werner

intensity is expected to rise exponentially with time at high redshifts (e.g., see fig. 4.6 later

on). Treating the intensity as fixed at its final value would greatly overestimate the strength

of the feedback, since the cooling and collapse involved in star formation should respond with

a delay to a drop in the amount of H2. For instance, if the halo core has already cooled and

is collapsing to a star, changing the Lyman-Werner flux will not suddenly stop or reverse the

5Another common notation is the Lyman-Werner flux FLW = 4πJLW
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collapse. Another indication for the gradual process involved is that the simulation results can

be approximately matched [101] by comparing the cooling time in halo cores to the Hubble time

(which is a relatively long timescale). Though the relation in eq. 4.1.3 is the best currently

available, more elaborate numerical simulations, which we again hope to stimulate, are needed

in order to find a more realistic dependence. We overcome this limitation by using the above

relation not with the final value of J21 at formation, but with the value at a mean characteristic

time within the halo formation process. Doing this with a realistically large uncertainty should

suffice for our main goal of spanning the possible range of the effect of JLW and vbc on the

21-cm background during the X-ray heating era. Specifically, in our analysis, which are dis-

cussed in the following, we consider two possible feedback strengths which we refer to as “weak”

and “strong” feedback. Namely, for halos forming (i.e., virializing) at some time tvir, we adopt

the effective Lyman-Werner flux J21 (which we use in eq. 4.1.3) as the Lyman-Werner flux in

the same pixel but at an earlier time tmid, i.e., at the midpoint of the halo formation process.

In order to obtain a realistically large range of uncertainty in the feedback, with the spherical

collapse model in mind, we either assume that “formation” spans the beginning of expansion up

to virialization (i.e., t = 0 to t = tvir, giving tmid = 1
2 tvir: weak feedback), or just the collapse

stage starting at turnaround (i.e., t = 1
2 tvir to t = tvir, giving tmid = 3

4 tvir: strong feedback).

We compare our results to the limiting cases of no feedback or saturated feedback. The latter

corresponds to assuming that star formation is only possible via atomic cooling; this can happen

as a results of various processes one of which is an extremely efficient Lyman-Werner feedback

which dissociates H2 early enough and stars form in atomic cooling halos (Mcool > 3× 107M⊙)

(as opposed to Mcool < 106M⊙ for the H2 case). For reference, we also consider the no-feedback

case without the streaming velocity, in order to assess the importance of the velocity effect. For

given parameters, at each redshift the cosmic mean gas fraction in stars decreases in the different

cases in the order: no feedback no velocity, no feedback, weak feedback, strong feedback, and

saturated feedback (where all cases except the first include the streaming velocity effect). On

fig. 4.5 we show two-dimensional slices (which correspond to the set of initial conditions shown

on fig. 4.1) of Lyman-Werner intensity for four different cases: without velocity and without

feedback, with velocity and without feedback, without velocity and with strong feedback and,

finally, with velocity and with strong feedback, all presented at redshift 20. We can see that (i)

the fluctuations in Lyman-Werner trace those of density which we have shown on fig. 4.3 but
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Figure 4.5: Fluctuations in the Lyman-Werner background at z = 20 nor-
malized by the mean value in a box for the cases without feedback (Top) and
with the strong feedback (Bottom) and with and without vbc (Right and
Left correspondingly). The normalization constants are 5.5 (no feedback,
no vbc), 3.9 (no feedback, vbc), 1.6 (feedback, no vbc) and 1.3 (feedback, vbc).
The plots show logarithm of the intensity of the Lyman-Werner background.

are more diffused and (ii) the feedback erases the traces of the velocity bias.

4.2 Signature of First Stars at z ∼ 20

Inhomogeneous heating, one of the sources of fluctuations in the 21-cm background, is a direct

result of the inhomogeneous star formation rate, biased by δR, vbc and the feedback. Therefore,

fluctuations in the 21-cm are also biased by the large scale fluctuations in density and relative

velocities, and depend on the efficiency of the negative feedback. As we show in [28], generic

prediction of supersonic relative velocities is an overall flat power spectrum of the 21-cm signal

with prominent BAO signature. In [28] we consider only the two limiting cases of the feedback:

the non-efficient feedback and the case of the very efficient feedback. In the former case, relative
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velocities imprint fluctuations on ∼ 130 Mpc scales (0.66 deg at z = 20) in the 21-cm background

and boost up the signal by a factor of 3.8 relatively to the case where vbc are ignored, so that

the amplitude of the predicted 21-cm signal from z = 20 is 11 mK on k = 0.05 Mpc−1. These

large-scale fluctuations are easier to observe than those on smaller scales since 21-cm arrays lose

sensitivity with increasing resolution [49]. On the other hand, in the case of the very efficient

feedback, stars form via atomic cooling in heavier halos which are strongly biased. Therefore,

in this case the power spectrum is even higher, 13 mK on the same scale; however, the effect of

streaming velocities is suppressed, reducing the oscillatory signature and steepening the power

spectrum, since heavier halos are less sensitive to vbc. We thus predict a strong, observable signal

from heating fluctuations, regardless of the precise timing of the Lyman-Werner transition (which

we confirm in [29]), with the signals shape indicating the relative abundance of small versus large

galaxies. In the following we consider the effect of realistic negative Lyman-Werner feedback on

these exciting observational prospects. We quote here the results of our simulation, discussed in

section 4.1, which simultaneously evolves stellar density and the X-ray, the Lyman-Werner and

the 21-cm backgrounds, accounting for realistic negative feedback discussed in section 4.1.1.

4.2.1 The Role of the Negative Feedback

The negative feedback suppresses star formation leading to a slower build up of all the radiative

backgrounds as well as a slower heating of the gas. Figure 4.6 shows the growth of mean Lyman-

Werner flux in a (400 Mpc)3 box in time for different types of negative feedback. Clearly, the

stronger is the feedback, the fewer stars are formed and, thus, the slower is the growth of the

Lyman-Werner intensity. Feedback can potentially be very strong at high redshifts (as indicated

by the saturated feedback case), but in practice the Lyman-Werner feedback is expected to affect

star formation only when the effective flux reaches a level of J21 ∼ 10−5; this happens at around

redshift 30 for the weak feedback or 40 for the strong feedback. In both realistic feedback cases,

the Lyman-Werner feedback effectively saturates at z ∼ 10. In addition, the figure demonstrates

the effect of vbc on the Lyman-Werner flux. The impact is maximal at high redshifts and reaches

about an order of magnitude at z ∼ 40, but becomes quite small at lower redshifts.

We can easily understand why the two realistic feedback cases converge with time. Initially,

the effective Lyman-Werner flux for star formation (i.e., J21 used in eq. 4.1.3) is much higher at a

given z for the strong feedback case (which assumes a less delayed value, closer to the value of J21

78



10 15 20 25 30 35 40 45 50
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

1+z

J 
[1

0−
21

 e
rg

 s
−

1  c
m

−
2  H

z−
1  s

r−
1 ]

Figure 4.6: The actual Lyman-Werner intensity (solid lines) and the effec-
tive Lyman-Werner intensity for feedback on star formation (dashed). We
show the cosmic mean (i.e., average in our box) versus redshift in the follow-
ing cases: no feedback no vbc (purple), and with vbc: no feedback (red), weak
feedback (blue), strong feedback (green), and saturated feedback (black).

at z). The strong resulting feedback leads to a slower rise of the actual J21 and thus, eventually,

also of the effective J21, compared to the weak feedback case. Therefore, the effective J21 in

the weak feedback case gradually catches up with the strong feedback case. Also important is

that the rate of increase of the flux naturally slows with time (i.e., the curves flatten), since

star-forming halos become less rare (i.e., they correspond to less extreme fluctuations in the

Gaussian tail of the initial perturbations). The weak feedback case effectively looks back to J21

at an earlier time, when the rise was faster.

Figure 4.6 tracks the rise of the Lyman-Werner flux through several milestone values of the

evolution history of the Universe. A reasonable definition of the central redshift of the Lyman-

Werner transition, zLW , is a mean effective intensity of J21 = 0.1, at which the minimum halo

mass for cooling (in the absence of streaming velocities) is raised to ∼ 2 × 106M⊙ due to the

Lyman-Werner feedback. This is a useful fiducial mass scale, roughly intermediate (logarithmi-

cally) between the cooling masses obtained with no Lyman-Werner flux and with saturated flux.

The central range of the Lyman-Werner feedback transition can be defined by the effective flux

coming within an order of magnitude of its central value, so that the minimum Mcool goes from

8× 105M⊙ to 5× 106M⊙ during this period.

Feedback also slows down the heating of the Universe, fig. 4.7. For example, the average

heating rate at redshift 20 for the weak, strong and saturated feedbacks are 55.9%, 33.7% and
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Figure 4.7: The cosmic mean gas kinetic temperature versus redshift in
the following cases: no feedback no vbc (purple), and with vbc: no feedback
(red), weak feedback (blue), strong feedback (green), and saturated feedback
(black) and the temperature of the CMB (dashed).

19.1% of the heating rate with no feedback (all including the streaming velocity). As a result,

the heating transition, defined as the redshift zh when the mean gas temperature equals that of

the CMB, is delayed. In our simulation, zh = 17.1 for the no-feedback case (no feedback and no

velocity is zh = 17.7), while saturated feedback would delay this milestone to zh = 14.6. The

realistic feedback cases are intermediate: zh = 15.7 for the weak feedback case (with a Lyman-

Werner transition centered at zLW = 19.2, and a central range of z = 22− 15.2), and zh = 15.0

for strong feedback (with zLW = 23.6, and a central range of z = 28.3 − 18.1). In every case,

the Lyman-Werner transition starts very early, and passes through its central range before the

heating transition (with a much bigger delay between the two transitions in the strong feedback

case).

4.2.2 21-cm Signal

A typical two-dimensional slice of the 21-cm brightness temperature in our simulated volume

(which corresponds to the set of initial conditions shown on fig. 4.1) is demonstrated on fig. 4.8,

where we show the maps without (top) and with (bottom) vbc for the cases (from left to right)

of no feedback, weak feedback and strong feedback. As a snapshot of a universe for each model

would look very distinctive for a fixed redshift mainly due to the difference in the overall delay

in heating, we choose to show the plots at a redshift related to one of the physical transitions

of the simulated universe. In fact, we adopt zh + 3 to play the role, since, as we see from our
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simulations, this is roughly the redshift at which heating fluctuations in the 21-cm signal are

maximal. With the overall normalization factored out, the physical differences become clearer.

As anticipated, the fluctuations in the 21-cm signal trace those of star formation. In particular,

we see the same signature as in the maps of gas fraction in star forming halos (fig. 4.3) with

large scale features imprinted by vbc and suppressed by the negative feedback. However, as in

the case of the Lyman-Werner intensity (fig. 4.5), these maps look smoother than those of the

gas fractions due to the finite effective horizons of the radiative backgrounds which couple to

the 21-cm signal. The two realistic feedback cases, in which the effect of vbc is not completely

suppressed, show a clear signature of relative velocities (for instance, the large cold spot on

fig. 4.8, in the upper central part of each one of the three bottom panels, which corresponds

to a region in which vbc is strong, same as on fig. 4.1, right panel). However, as anticipated,

in these cases the signature of vbc is not as strong as in the no-feedback case. To understand

the comparison between the weak and the strong feedbacks, we note that the velocities cause a

very strong suppression of star formation up to a halo mass M ∼ 106M⊙, but above this critical

mass the suppression and itsM -dependence weaken considerably. Thus, once the Lyman-Werner

feedback passes through its central redshift, the remaining vbc effect changes only slowly with

M , so that around the time of the heating transition, the weak and strong feedback cases show

a similar fluctuation pattern. However, the strong dependence of bias on M remains, so that

the strong feedback case leads to larger fluctuations on all scales.

These and other features can be seen more clearly and quantitatively in the power spectra

of the 21-cm signal (fig. 4.9). Initially, the 21-cm fluctuations from inhomogeneous heating rise

with time as the gas heats up, which happens first in the regions with a high stellar density.

At the more advanced stages of heating, the 21-cm fluctuations faint away, since the 21-cm

intensity becomes independent of the gas temperature once the gas is much hotter than the

CMB, i.e., the heating fluctuations saturate at low redshifts. Interestingly enough, as we show

in [29], the power of the fluctuations reaches its maximum slightly earlier than the redshift of

heating transition at zh + 3 for all the models under consideration. However, the comparison

among the various feedback cases is complex, since the negative Lyman-Werner feedback has

several different effects:

1. The lowest-mass halos are cut out, reducing the effect of the streaming velocity;
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Figure 4.8: The 21-cm brightness temperature Tb (relative to the cosmic
mean in each case) in mK, shown at zh+3. The cases shown: no vbc (Top),
vbc (Bottom) for the (from Left to Right) no feedback, weak feedback
and strong feedback cases. The cosmic mean values are: ⟨Tb⟩ = −62 [mK],
⟨Tb⟩ = −66 [mK], ⟨Tb⟩ = −76 [mK], ⟨Tb⟩ = −80 [mK], ⟨Tb⟩ = −62 [mK],
⟨Tb⟩ = −40 [mK] respectively (left to right, up down) and the exact redshifts
of every plot are (20.4, 19.7, 18.5, 18.2, 17.9, 17.6).

2. The higher-mass halos that remain are more highly biased;

3. The overall suppression of star formation delays the heating transition to a lower redshift;

4. Since the higher-mass halos that remain correspond to rarer fluctuations in the Gaussian

tail, their abundance changes more rapidly with redshift, making the heating transition

more rapid (i.e., focused within a narrower redshift interval).

Thus, at zh + 3 the large-scale (k = 0.05 Mpc−1) peak is lower for the realistic feedback cases

than it would be with no feedback (effect #1), and higher for strong feedback than for the weak

case (effect #2). Further back in time (zh + 12), strong feedback gives lower fluctuations than

weak (effect #4); at that redshift, the realistic feedback cases give a higher power spectrum than

both no feedback (due to effect #2) and saturated feedback (due to effect #4). Lower redshifts

offer improved observational prospects, due to the lower foreground noise, which makes negative

feedback advantageous due to effect #3, above. Overall, we find that the most promising redshift

for future observations is z ∼ zh + 3 (table 4.1), i.e., redshifts 17.6− 20.1.
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Figure 4.9: Power spectra of the 21-cm brightness temperature for no feed-
back (red), weak feedback (blue), strong feedback (green) and saturated
feedback (black). Left: z = z0 + 3 with (solid) or without (dashed) the rel-
ative velocity. Right: Including vbc, at redshifts z = z0 (dashed), z = z0+3
(solid) and z = z0 + 9 (dotted).

Assuming a first-generation radio telescope array with a noise power spectrum that scales as

(1 + z)5.2 [28, 70], the maximal signal to noise of the large-scale (k = 0.05 Mpc−1) peak is 3.24

for weak feedback (at z = 18.3) and 3.91 for strong feedback (at z = 17.7). For comparison, the

no-feedback case considered in [28] gave (at z = z0 = 20) a signal to noise of only 2.0. Here we

have assumed the projected sensitivity of a thousand-hour integration time with an instrument

like the Murchison Wide-field Array [106] but designed to operate in the range of 50-100 MHz.

An instrument similarly based on the Low Frequency Array [107] should improve the signal to

noise by a factor of ∼ 1.5, while a second-generation instrument like the SKA or a 5000-antenna

MWA should improve it by at least a factor of 3 or 4 [28,70].

Beyond just detecting the power spectrum, it would be particularly remarkable to detect

the strong BAO signature, since this would confirm the major influence of the relative velocity

and the existence of small (106M⊙) halos. We find that the signal to noise for the large-scale

BAO feature of the power spectrum is typically ∼ 0.5 − 0.7 times that of the large-scale peak

itself (table 4.1). In particular, the BAO signal to noise also peaks at z0 + 3, exceeds unity at

z0 − 0.7 < z < z0 + 6.9 (weak) and z0 − 1.1 < z < z0 + 6.4 (strong) and is reaching a value of

1.79 (weak) or 2.14 (strong feedback).
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z − z0
δT21, S/N BAO, S/N

no vbc no fbk weak strong sat no vbc no fbk weak strong sat

−3 1.07 1.24 1.60 1.73 1.84 0.45 0.58 0.72 0.76 0.79
0 1.68 2.33 2.35 2.69 3.09 0.70 1.26 1.16 1.30 1.31
3 2.26 3.59 3.24 3.91 4.74 0.91 2.18 1.79 2.14 2.00
6 1.02 1.75 2.08 1.89 1.34 0.37 1.17 1.30 1.18 0.54
9 0.086 0.33 0.56 0.34 0.31 0.051 0.23 0.41 0.25 0.14
12 0.18 0.23 0.24 0.27 0.34 0.083 0.099 0.11 0.12 0.15

Table 4.1: The signal to noise ratio S/N (i.e., the square root of the ratio
between the power spectra of the signal and noise), for a projected first-
generation radio array. We show the S/N of the large-scale peak at the
wavenumber k = 0.05 Mpc−1 (Left), and of the BAO component (Right),
at various redshifts, for five cases: no feedback no vbc, no feedback with
vbc, weak feedback with vbc, strong and saturated feedbacks with vbc. The
BAO S/N is defined as the square root of the difference between the peak
at k = 0.05 Mpc−1 and the trough at k = 0.07 Mpc−1, each measured with
respect to the non-BAO power spectrum (i.e., the power spectrum smoothed
out using a quartic fit), and each normalized by the noise power spectrum
at the same k at the corresponding redshift.

4.3 Discussion

Our results show that due to the feedback and vbc the 21-cm signal is enhanced, being ∼ 10

mK on ∼ 100 Mpc scales, which is stronger than the expected noise at a wide range of redshifts

around z ∼ 20. The exciting possibility of observing the 21-cm power spectrum from the epoch

of primordial star formation should stimulate observational efforts to focus on this early epoch.

Such observations would push well past the current frontier of cosmic reionization (z ∼ 10,

t ∼ 480 Myr) for galaxy searches [111] and 21-cm arrays [49]. Detecting the remarkable velocity-

caused BAO signature (which is much more prominent than its density-caused low-redshift

counterpart) as well as the slope of the power spectrum (which depends on the efficiency of

the Lyman-Werner feedback and which determines the relative abundance of large versus small

star-forming halos) would confirm the major influence on galaxy formation of the initial velocity

difference set at cosmic recombination. Measuring the abundance of 106M⊙ halos would also

probe primordial density fluctuations on ∼ 20 kpc scales, an order of magnitude below current

constraints. This could lead to new limits on models with suppressed small-scale power such

as warm dark matter [71]. In general, the 21-cm fluctuation amplitude at a given redshift

can be reduced by taking a harder X-ray spectrum, making galactic halos less massive (and
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thus less strongly clustered) or by increasing the X-ray efficiency (thus leading to saturated

heating fluctuations). Thus, the characteristic shape that we predict is essential for resolving

this degeneracy and allowing a determination of the properties of the early galaxies. Moreover,

similar observations over the full ∆z ∼ 6 redshift range of significant heating fluctuations could

actually detect the slow advance of the Lyman-Werner feedback process, during which the

power spectrum continuously changes shape, gradually steepening as the BAO signature weakens

towards low redshift.

It would be particularly exciting to detect the evolution of the 21-cm power spectrum

throughout the heating transition, as we suggested in [28]. Interestingly enough, the signal

to noise remains above unity at all z < z0 + 7.9 = 23.1 in the case of the weak feedback and

z < z0 + 7.2 = 21.9 for the strong feedback (down to z = 10 where our simulations end) for a

first-generation radio telescope, whereas future instruments may be able to probe even earlier

times, including the central stages of the Lyman-Werner feedback and the era of Lyα fluctuations

(work in progress [30]).
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Chapter 5

Cosmological Imprints of

Pre-Inflationary Relics

In this part of the thesis, partially based on the paper by A. Fialkov, N. Itzhaki, E. D. Kovetz

(2010) [31] and B. Rathaus, A. Fialkov, N. Itzhaki (2011) [32], we discuss even earlier times,

than were considered in previous chapters, looking back into the epoch of inflation when initial

conditions for structure formation were created and into the pre-inflationary era. The question

of initial conditions, their character and nature, is one of the most important in cosmology, as

all cosmic structures build up out of the initial tiny perturbations. The standard mechanism

which is responsible for generating initial conditions, and which involves quantum fluctuations

in a single slowly evolving scalar field, was discussed in chapter 2. In this chapter we consider an

extension of this scenario, inspired by realizations of inflation in string theory, where a massive

pre-inflationary point particle was added to the system. The particle slightly modifies initial

conditions for structure formation (discussed in section 5.1) and produces a unique cosmological

signature, which we overview below.

One of the basic features of the exponentially fast expansion during inflation is that it washes

out all traces of the pre-inflationary world, and therefore initial conditions produced during infla-

tion are believed to be unbiased by the pre-inflationary setup. In particular, any pre-inflationary

relics which existed before the beginning of inflation are diluted exponentially fast during the

accelerated expansion and are expected to be extremely rare in the post-inflationary Universe.

Naturally, the abundance of the pre-inflationary relics after the end of inflation depends on the
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duration of inflation as well as on the initial density of the relics. Hence, the shorter is inflation,

the higher are our chances to detect a pre-inflationary relic. The optimal observational prospects

are met if inflation has lasted the minimal period of time which is still enough to produce initial

conditions for structure formation at all the observable scales (about 62 e-foldings).

Although the energy scales before inflation are not directly probed by observations, they are

expected to be very high. Current observations provide an upper limit on the scale of inflation

to be V
1/4
0 ≤ 2.3 × 1016 GeV [112], which is obtained combining the WMAP measurements

with the distance measurements of BAO and the Hubble constant. As a result, energy scale

during the pre-inflationary epoch, which should be higher than the scale of inflation at least

in the simplest models, is expected to be in the range 1016 − 1019 GeV (where the upper limit

is the Planck scale, at which quantum field theory breaks down). Thus, if any traces of the

pre-inflationary epoch were observed, we would be probing extremely high energies (probably

the highest existing in nature!), which are unreachable by ground-based particle accelerators.

For comparison, the highest energies probed by the accelerators are of order 104 GeV by the

Large Hadron Collider (LHC). This fact makes cosmology an exclusive tool to explore and put

bounds on physics at the ultra-violate limit, close to Planck scale.

The most generic prediction of the pre-inflationary epoch would be existence of heavy par-

ticles. For instance, magnetic monopoles of standard Grand Unification must have a mass of

order 1017 GeV, which cannot be thermally excited after inflation ends, but can be produced

during the pre-inflationary epoch. Another example of heavy relics which could inhabit the pre-

inflationary world are products of string theory, such as wrapped D-branes [127], domain walls

etc. Naturally, the density of these heavy objects drops with the expansion of the Universe, in

particular the density of massive particles decays as a(t)3. Most probably, after being excited,

these particles decay thermally; however even if so, during their lifetime they are coupled to

the inflaton and, thus, affect quantum perturbations of this field. As soon as inflation ends,

signature of pre-inflationary relics is imprinted in energy density via the standard mechanism

(see the discussion in chapter 2) and can probably be observed in the large scale structure and

the CMB. If we are lucky enough to have traces of one these objects within our light-cone, we

would have a unique chance to probe the pre-inflationary world and put new constraints on high

energy theories (which include string theory). In this chapter we constrain a scenario in which

one of such pre-inflationary relics is within our observable Universe, quoting mainly our results
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from [31] and [32].

In addition to our primary interest of constraining high energy theories, this study was

motivated by a considerably large number of small inconsistencies of the cosmological data with

the ΛCDM model. Despite the overall good agreement of the data with this relatively simple

model, there are large-scale “anomalies” found both in the CMB data and in the data of galaxy

surveys. The very existence of these unexpected deviations from the ΛCDM model is a very

arguable subject today, and if they do exist they are most probably just a statistic fluctuation

due to the fact that we have only one Universe to observe. Nevertheless it is tempting to try to

interpret them as signature of new interesting physics. The fact that the “anomalies” are found

mainly on large cosmological scales (which according to the theory of inflation were perturbed at

the earliest stages of inflation and thus probe the high-energy end of the inflationary potential)

may be an indication that they all belong to a common pre-inflationary phenomenon. A non-

complete list of the cosmic “anomalies” both in the CMB and in the large-scale structure is:

1. Bulk flow is a coherent flow of galaxies on top of the Hubble expansion measured relative

to the CMB rest frame at all scales up to ∼ 100 Mpc/h and detected using various surveys,

e.g. by [113]). The flow was found to be of a dipolar character and could be generated

by a “Great attractor” located at the distance ≥ 300 Mpc from us. However recent works

in this field do not find the bulk flow to be inconsistent with the ΛCDM model, e.g. [114]

and [115].

2. Vanishing two-point temperature correlation function of the CMB, which is the most long-

standing of the CMB unexpected feature found by both COBE and WMAP satellites.

Apparently, the correlation function vanishes at angles 60◦ < θ < 130◦ and is negative at

larger angles, whereas the expected correlation function is negative in the former region

and positive at largest scales. This behaviour was first reported by COBE-DMR [116] and

confirmed later by the WMAP (e.g., one- [117] and seven-year [119] results). Although the

correlation function is within 95% confidence range of the theoretical curve predicted by

the ΛCDM model for any angular scale and thus is in general consistent with theory [119],

its proximity to zero was found to be ∼ 3σ inconsistent with ΛCDM [120].

Another unexpected feature, the lack of power in low-l modes [116,117], is closely related

to the vanishing correlation function. However, the two statements are not equivalent
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when the cut-sky maps are analyzed.

An interesting observation to make is that the significant drop in the power spectrum at

the largest cosmological scales is the most generic prediction of a short-lived inflation [121].

The explanation is simple: the power spectrum of the CMB at large scales directly traces

primordial perturbations of the inflaton field which depends on both, the potential of

the inflaton and its derivative P (k) ∝ V 3

V ′2 . If the observed largest scales belong to the

beginning of inflation (in other words, if inflation lasted the minimal amount of time to

create the perturbations on all the observable scales) we would expect the inflaton potential

on these scales to be not completely flat and its derivative to grow toward larger scales,

which would lead to a drop in the power, similar to the observed one.

3. Planarity and alignment or correlation between low-l modes, [119] and [120]: it was shown

that both the quadrupole and the octupole of the WMAP all-sky data are planar and the

planes are aligned at 99.6% confidence level. In addition these planes seem to be strangely

correlated with motion of the solar system (the plane is perpendicular to the ecliptic

plane, which is a rather peculiar coincidence and suggests a a non-inflationary origin of

this anomaly). Hemispherical power asymmetry [119] is closely related to the alignment

between the multipoles. The power in the CMB fluctuations is distributed ∼ 2σ unevenly

between the north and south celestial hemispheres.

4. Giant rings in the CMB, found by [122], are cold and hot rings of large angular size

25 ≤ θ ≤ 115 degrees in the filtered CMB temperature maps, found to be inconsistent

with ΛCDM at ∼ 3σ level. In addition, as the authors claim, the direction on the sky

around which the temperature profile is anomalous is 2.5σ correlated to the direction of

the coherent bulk flow of galaxies.

5. Parity in the CMB: the CMB maps appear to be surprisingly odd (at the level of 3.6σ)

when reflected through a plane [123].

6. The WMAP cold spot is the coldest spot of the CMB data detected by the WMAP satellite,

found to be unexpectedly large and cold, at the level of ∼ 2.4σ. It is located in the southern

hemisphere, (l, b) ∼ (209◦,−57◦) in galactic coordinates, and its average amplitude is

δT ∼ −73 µ [K] in the 10◦ patch of the sky (see [124] and [125]). The cold spot as
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reported to be partially responsible for the non-Gaussianity of the CMB maps [124].

Although, as mentioned above, these deviations from the ΛCDMmodel are most likely a mere

statistical fluctuation related to the fact that we observe a single realization of the Universe, it

is still interesting to think about a common physical explanation to address all the “anomalies”.

For instance, authors of [126] have shown that the unexpected alignment of the low-l multipoles

of the CMB temperature can be attributed to a local void of radius 300 Mpc/h. These authors

also suggested that the cold spot in the WMAP southern sky is due to a similar void at z ∼ 1.

Here we propose another theoretical setup in which the discussed features are generated

naturally and which, in addition, provide a unique probe of the pre-inflationary epoch. Our

method consists of adding a pre-inflationary relic to the standard slow-roll inflation scenario.

Such a relic mildly modifies the initial conditions for structure formation and may lead to similar

features in the CMB and galaxy surveys. In this thesis we focus on a specific example of a pre-

inflationary relic proposed in [128], namely, a Pre-Inflationary point Particle (PIP) which existed

at the end of the pre-inflationary period and (or) at the beginning of inflation. We assume the

mass of this particle to be coupled to the inflaton and discuss cosmological signature generated

by this coupling [31,32]. In this chapter we work in units where c = (8πG)−1/2 = 1 and ′ means

the derivative with respect to the inflaton field.

5.1 Effect of Pre-Inflationary Particles on Inflation

In this section we discus the effect of a pre-inflationary massive point particle on perturbations

in the inflaton field following [31], part of which revises [127]. Our setup consists of the simplest

case of single-field slow roll inflation scenario to which we add the particle of a mass that can be

coupled to the inflaton. This property is motivated by a realization of inflation in string theory,

discussed in [128], where such a particle is a D-brane which wraps some cycles of a compact six-

dimensional manifold in a setup of ten dimensional string theory and the inflaton is associated

with the volume of the compact manifold. In this model, a very steep inflation potential would

not allow slow-roll inflation unless the particle is added. Such a particle adds friction to the

inflaton field, slowing its motion down the steep potential and making inflation possible.

Since the observable Universe is well-described by the ΛCDM model accompanied by a slow

roll inflation, we consider a setup in which PIP adds only a small perturbation. In this case
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the background metric evolution, as well as dynamics of the vacuum-expectation value of the

inflaton, should remain unaltered and agree with our discussion in sections 2.1 and 2.2. However

the particle does modify the equation of motion for the perturbation in the inflaton field, δϕ. In

this case we would need to add a source term to the homogeneous differential equation 2.2.8. Let

us start from the action for the complete system of the inflaton and PIP, Stot, where we assume

no explicit interactions between the two components but allow the mass of PIP be inflaton-

dependent. In this case Stot = Sϕ + SPIP , where Sϕ is the usual action for the scalar field eq.

2.2.4 while SPIP is the Nambu-Goto action for a single massive non-dynamical particle

Sparticle = −
∫
dτm =

∫
dx0

√
−g00m, (5.1.1)

where dτ =
√
−g00dt = (1 + A)dt and A can be found from one of the Einstein equations, eq.

2.2.7.

To find the new equation of motion for δϕ which is supposed to be a small compared to ϕ,

we perturb the field ϕ → ϕ + δϕ and keep first order terms in δϕ. In this case the variation of

Sparticle with respect to the inflaton is

δSparticle =

∫
d4x

(
∂m

∂ϕ
δϕ+mA

)
δ3(x) ≡

∫
d4x

√
−g

(
λ
δ3(x)

a(t)3

)
, (5.1.2)

where

λ ≡ ∂m

∂ϕ
− 1

2

V ′

V
m (5.1.3)

is the only new (dimensionless) parameter in the problem. In the slow-roll inflationary scenario

the second term is expected to be very small due to a very flat potential in this case. Thus

the leading contribution to λ comes from m′. The reason is simple: if the mass depends on the

inflaton then there is a direct coupling between the PIP and the inflaton, while a constant mass

means that the interaction is gravity-mediated (indirect).

The modified equation of motion takes the following form in phase space

δϕ̈k + 3Hδϕ̇k +
k2

a(t)2
δϕk = − λ

a(t)3
. (5.1.4)

The only difference between this equation and the standard one (eq. 2.2.5) is that eq. 5.1.4 has a
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non-vanishing ϕ-independent source term (right-hand-side). A solution to such an equation is a

superposition of a general homogeneous solution, which is obtained when we set the source term

to zero, and of a particular non-homogeneous solution of this equation. In particular, we are

interested in solution for every scale k when it leaves the horizon, since this is what is relevant

for cosmological observations. The homogenous part of the solution is well known and describes

quantum fluctuations of the inflaton field, discussed in chapter 2; whereas the solution to the

non-homogeneous equation was discussed in detail in [127] and in phase space is

δϕPIP (k) = − λ

k3
H√
32π

, (5.1.5)

evaluated at the moment of “horizon crossing” when the k-mode leaves the causal patch. To

find this solution we used an early-time solution of the eq. 5.1.4, when the mode was well

within the causal patch, as initial conditions. In this limit the time derivatives in eq. 5.1.4 are

negligible and the solution scales as 1/ra(t), or as λ/k2 in phase space. The main role of the

non-homogeneous part of the solution is to add non-vanishing one-point function to the random

Gaussian perturbations of the scalar field. Thus in total, perturbations in the inflaton are now

randomly distributed with nonvanishing k-dependent offset (the one-point function) given by

eq. 5.1.5 and the power spectrum determined by eq. 2.2. The non-vanishing one-point function

depends only on the magnitude of wavenumber and not on the direction. Thus, PIP creates a

spherically symmetric defect in the inflaton field.

Eqs. 2.2 and 5.1.5 imply that both δϕPIP and δϕ scale like H. Therefore, for the imprints

of PIP to be noticeable we need the dimensionless parameter λ to be large, independently of H.

To make this statement more precise we compute the signal to noise ratio (S/N) for an ideal

experiment, for a setup in which PIP is located at the origin of the survey and an observer has

a full access to all the comoving modes in the range k1 < k < k2. The signal which we want to

detect is the one-point function, δϕPIP , of the gaussian distribution of quantum fluctuation in

the inflaton. In this setup the expression for the signal to noise is (see a discussion on the signal

to noise in Appendix A, eq. A.1.6)

(
S

N

)2

ideal

= 4π

∫
dkk2

δϕ2PIP (k)

H2/2k3
=
λ2

4
log(k2/k1). (5.1.6)
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It is natural to take k2 to be the scale at which the linearized approximation breaks down, which

is roughly (5 Mpc/h)−1 today. On the other hand, k1 is bounded by the Hubble scale. Hence

the best-case predictions for the signal to noise would be

(
S

N

)2

ideal

≈ 3λ2

2
, (5.1.7)

which implies that for δϕPIP to be detectible (S/N to be larger than one) λ should satisfy

|λ| >
√

2/3. Since the dependence of the S/N on the size of the survey, 1/k1, is only logarithmic,

this conclusion is not changed much for realistic surveys with 1/k1 of the order of 100 Mpc/h.

In total, the imprints of PIP can be observed on top of the ordinary large scale structure in an

ideal experiment if |λ| ≥ 1. However in reality not all the information is available and realistic

experiments might be less sensitive to such an anomalous perturbation.

5.1.1 Applicability of the Approximation

So far we have assumed that there is a clear separation between the effect caused by PIP, δϕPIP ,

and the standard power spectrum caused by the usual quantum fluctuation of the inflaton 2.2.

However for a very large λ we expect this assumption to break down and to find mixing between

the two. In other words, in the discussion above we have neglected the backreaction of δϕPIP

which for large λ will alter the power spectrum in a significant way. To estimate whether or not

the backreaction of δϕPIP can indeed be neglected in the further discussion related to cosmic

observations we compare it to the standard driving force of inflation, V
′
,

1

a(t)2
∇2δϕPIP (r) ≪ V ′, (5.1.8)

where δϕPIP (r) = λ H4π log(r) is the Fourier transform of eq. 5.1.5. This condition should be

satisfied at horizon crossing when the power spectrum is determined. Thus

λ≪ 4πV
′

H3
∼= 105, (5.1.9)

where we have used the relation H2 = V/3 as well as the COBE normalization. As the values

of λ which appear in the rest of the work are at most 102, neglecting the backreaction of δϕPIP

is indeed a good approximation.
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5.2 The Giant Cosmic Structure

We next follow the procedure outlined in chapter 2 section 2.2 to relate the perturbations in

the inflaton field to cosmological observable quantities. As we know, the perturbations freeze at

super-horizon scales when they are outside of the causal patch and start to evolve again ones

the scales re-enter horizon.

So far we have shown that PIP creates a spherically symmetric defect in the inflaton profile,

which provides initial conditions for a growth of a unique cosmic structure (which we call a

Spherically Symmetric Cosmic Defect (SSCD)). This structure is anomalously large with respect

a typical structure which springs from the ordinary quantum perturbation in the inflaton. We

start with discussing the gravitational potential of the SSCD and its behavior in small- and large-

scale limits using eq. 2.2.11. At distances larger than the comoving Hubble scale during matter-

radiation equality, ∼ 110 Mpc, the potential well formed by the SSCD decays logarithmically

slow with the comoving distance r from the center in units of [Mpc/h]

ΦSSCD(r, z) = −λ
√
3

20π

V 3/2

V ′ D(z)(1 + z) log (r) . (5.2.10)

Using the COBE normalization (V 3/2/V ′ = 5.169 · 10−4) and setting z = 0 we find the that its

gravitational profile today should be

ΦSSCD(r, z = 0) ∼ ±|λ|10−5 log (r) . (5.2.11)

(We will widely apply this large-scale limit in the course of the further discussion.) The plus

(minus) sign is obtained when λV
′
< (>) 0 for which 5.2.11 is an over (under) dense spherically

symmetric region. If the mass of PIP does not depend on the inflaton or decays in the course

of inflation m′ < 0, then λ = m′ − 1
2V

′
m/V is always negative and the potential is always an

overdense region. On the other hand, if the mass is coupled to the inflaton and m′ > 0, PIP can

seed a supergiant void.

At distances shorter than 110 Mpc, the transfer function is more complicated and to obtain

an accurate profile of the potential one has to rely on numerical methods. To produce the transfer

function we used a stand-alone version of CAMB [129] with cosmological parameters taken from
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the joint results of WMAP+BAO+SNI1: H0 = 70.1 km/sec/Mpc, Ωb = 0.0462, Ωc = 0.233 and

ΩΛ = 0.721. We examined the resulting potential in the range 10 Mpc/h < r < 500 Mpc/h and

found a good fit to the numerical curve. The fitting function is

Φfit(r) = λ · 10−5

(
a

r

b+ r
log(1 +

r

c
) + d

)
, (5.2.12)

where the numerical values of the parameters are

a = 1.1394± 0.0023, b = 20.27± 0.23 Mpc/h,

c = 75.44± 0.36 Mpc/h, d = −0.8392± 0.0038. (5.2.13)

The energy density associated with the anomalous structure is determined by the gravita-

tional potential in the standard way eq. 2.2.12 (left). At distances much larger than ∼ 110 Mpc,

where we can use our approximation in the large-scale limit eq. 5.2.11 to calculate the energy

density contrast

δ(r)SSCD ∼= λ
233

r2
. (5.2.14)

As we see from this relation, the profile of the SSCD is identical to that of an isothermal sphere,

in particular the mass of an object grows linearly with the radius scale M(r) ∼ r. As expected,

the energy density contrast of the SSCD, δSSCD ∝ r−2 , decays slower then that of an ordinary

random structure, which at large scales follows the well-known Navaro-Frenk-White (NFW)

profile [130] where δ(r) ∝ r−3 at large distances. This fundamental difference (together with

the fact that the SSCD is spherically symmetric as opposed to typical random cosmic structure

which generically includes filaments, walls and voids) suggests that if indeed an SSCD is present

in the visible universe (and if |λ| is large enough), one could probably be able to detect it.

5.3 Observational Prospects

The most interesting question is whether or not the imprints of PIP on the sky can be observed.

Such a huge anomalous structure is expected to imprint perturbations in the CMB temperature

as well as in the 21-cm three-dimensional data which would look totally different than the

1http://lambda.gsfc.nasa.gov/product/map/dr3/parameters summary.cfm
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signature of the cosmic web. In this section we study signature of the SSCD in the CMB and

comment on the prospects to find it in the WMAP/Planck data, leaving predictions for the

21-cm surveys for future work.

The signal in the CMB associated with the spherically symmetric giant structure is a function

of only two parameters: the depth of the gravitational potential is proportional to λ, while its

distance to an observer is parameterized by r0 in units of [Mpc/h]. To calculate the observed

anisotropy it is natural to place an observer in the center of a coordinate system, as shown on

fig. 5.1, in which he/she would see the moment of decoupling of the CMB photons from baryons

as a sphere (the surface of last scattering) located rlss = 9750 Mpc/h away (at z ∼ 1000). In

principle r0 can be larger than rlss; practically, however, this case is not very interesting since it

yields a tiny S/N . In this setup with one anomalous feature in an overall rotationally symmetric

system it is convenient to work in cylindrical coordinates where we choose the z-axis (not to be

confused with the notation for redshift z) to point towards the center of our SSCD. Denoting

by θ the angle between this axis and the direction of observation, we can expand the CMB

temperature anisotropy in a conventional way using spherical harmonics as in eq. 2.3.17. In our

case of rotational symmetry around z-axis, the temperature anisotropy (due to the SSCD alone,

ignoring the cosmic web) would be a function of θ only, which requires the expansion coefficients

alm ̸=0 to vanish. Thus, in this case the signal is in al,m=0 modes only, which means that all the

information about the SSCD is in the one-point function of the m = 0 modes Sl ≡ ⟨al,m=0⟩.

We can now examine the effect of the SSCD on the cosmological observables. We start with

estimating the one-point function of the CMB, including the Sachs-Wolfe, eq. 2.3.14, and the

Integrated Sachs-Wolfe, eq. 2.3.15, effects. Next, we tune the parameter λ so that the SSCD

would produce the observed bulk flow for each distance r0, and plot the signal to noise in the

CMB versus r0. Finally we discuss the effect of the defect on the power spectrum of the CMB

via weak lensing.

5.3.1 CMB Temperature Anisotropy

The Sachs-Wolfe (SW) effect (see chapter 2, section 2.3) is responsible for the primary anisotropies

seen in the CMB. The temperature anisotropies are related to the gravitational potential in a

simple way as shown by eq. 2.3.14. The SW temperature anisotropy associated with the SSCD
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Figure 5.1: The basic setup. The z-axis points towards the center of the
SSCD. The distance between the SSCD and the observer is denoted by r0.
Due to the rotational symmetry of the setup we need to specify only one
angle defined with respect to the z-axis, which we denote by θ. The distance
between the observer and the photon along its path we denote by rγ and
the last scattering surface is located at a distance rlss (lss stands for last
scattering surface).

is then

δTSSCD,SW
T

=
ΦSSCD(rlss, zlss)

3
=

1

6
λC̃ log(r2lss + r20 − 2rlssr0 cos θ), (5.3.15)

where the normalisation constant C̃ is fixed by the COBE normalization to be C̃ = 1.4× 10−5.

In eq. 5.3.15 we ignore the monopole term (ΦSSCD(0)/3) which is just a constant shift of the

temperature and does not lead to any anisotropy, however it may have a small effect on our

estimates for the temperature of the CMB at decoupling. To calculate the S/N we decompose

the temperature anisotropy into spherical harmonics, where due to the azimuthal symmetry

only m = 0 modes contribute. The SW signal reads

SSWl = λC̃

√
π(2l + 1)

6

∫ 1

−1
dxPl(x) log

(
1− 2yx+ y2

)
, (5.3.16)

where y ≡ r0/rlss and x ≡ cos θ, can be computed analytically for each l. In particular for small

y (which means an object which is close to us relatively to the last-scattering surface, r0 ≪ rlss)

we can expand the result to find that the leading term scales like SSWl ∝ −λyl/
√
l. The full SW
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signal to noise ratio is thus (
SSW

N

)2

=
∑
l=2

(SSWl )2/Cl, (5.3.17)

where Cl is determined by the two-point function ⟨alma∗l′m′ ⟩ = δll′ δmm′Cl of the temperature

anisotropies of the CMB within the ΛCDM model. As is usually done, the l = 1 mode is ignored

since it is mixed with the Doppler effect, which we will discuss in the following. In the limit

y ≪ 1 we find that the signal to noise decays with l as (SSWl )2/Cl ∼ λ2y2ll. Thus, as expected

for the large-scale feature which is close to us, the main contribution to the signal to noise comes

from the low-l modes. With a bit of work it can also be shown that the leading contribution

comes from the low-l modes for any y which means that large diffused spots in the CMB sky

(compared to the standard CMB fluctuations) are a generic prediction of the SSCD.

Another way to imprint anisotropies in the CMB is via a very similar effect, the Integrated

Sachs-Wolfe (ISW), see chapter 2, section 2.3. The fact that the main contribution to the SSW

N

comes from the low multipoles, which refer to large-scale modes re-entering into the causal

horizon during dark-energy domination (z < 0.5), means that it is not a good approximation to

neglect the contribution of the ISW effect. Thus we have to add its contribution to the signal

to noise and consider the joint effect of SW and ISW
(
SSW+ISW

N

)2
=

∑
l=2

(
SSWl + SISWl

)2
/Cl.

Interestingly enough, the signs of the two contributions, SSWl and SISWl , are opposite: an

overdense region at the last scattering surface would imprint a cold spot in the CMB temperature,

while a decaying nearby overdensity would result in a hot spot. In our case of a huge anomalous

structure, which simultaneously affects the potential at the last scattering surface and at our

proximity, the interplay between the two effects may be nontrivial as we show below. Naturally,

a remote structure would cause a strong SW effect and a negligible ISW effect imprinting as a

big cold spot on the CMB map, on the other hand a nearby SSCD would cause mainly the ISW

effect leaving a huge diffused hot spot on the sky.

Decomposing the ISW effect associated with the SSCD into spherical harmonics, we find

SISWl = (5.3.18)

−λC̃
√
π(2l + 1)

∫ zlss

0
dzD(z) (1− f(z))

∫ 1

−1
dxPl(x) ln(1 + yγ(z)

2 − 2yγ(z)x),

where rγ(z) is the position of the photon along its trajectory from the surface of last scattering to
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the observer and yγ(z) = rγ(z)/r0. As anticipated, the larger is yγ the smaller is the contribution

of the ISW effect. This happens because in this case the CMB photons pass through the center of

the SSCD region when the expansion is dominated by cold matter. Since in a matter dominated

universe the linear growth rate is f(z) = 1, the contribution from the central part of the SSCD

vanishes, and the ISW anisotropy arises only from a small tail of the potential at low redshifts.

On the other hand, as the SSCD approaches the last scattering surface the anisotropy due to the

SW effect grows. Due to the interplay between SW and ISW, two effects of opposite sign one

of which is dominant at low redshifts and the other at high redshifts, there should be a location

r0 of the SSCD (which we refer to as “cancelation region”) at which the total signal vanishes

SSW (r0) + SISW (r0) = 0. In fact, this argument is valid for every mode l: there is a location

r0,l at which the power in mode l vanishes SSWl (r0,l) + SISWl (r0,l) = 0.

Numerical calculations of SSWl and SISWl as a function of r0 show that indeed both decay

with the multipole l and that for any practical purpose the first 50 multipoles have all the

information about the anisotropy by the SSCD. In addition, the numerical calculation shows

that r0,l grows with l and that for low-l, it depends fairly mildly on the multipole number l. For

example, in fig. 5.2 (left), on which we show the lowest multipoles of the total signal versus r0,

we can clearly see the cancelation regions of the lowest multipoles. In particular, for the lowest

multipoles it is r0,2 = 4400 [Mpc/h], r0,3 = 4700 [Mpc/h] and r0,4 = 4980 [Mpc/h]. Since the

main contribution to the signal comes from the low-l modes, the SW-ISW cancellation leads to

a trough in the S/N around the low-l cancellation region, i.e. around r0 = 4700 [Mpc/h] (we

will discuss this feature later in more details).

The model parameters λ and r0 can be constrained by the CMB data which is well-described

by the ΛCDM model apart from some minor “anomalies” listed in the beginning of this chapter.

Since the signal merely scales with λ, for every location r0 there is a critical value of λ, denoted

by λcr(r0), such that for λ > λcr(r0) the signal is larger than the noise. Namely, for λs larger

than the critical value, the imprints of the SSCD in the CMB are detectable. In fig. 5.2 (right

frame) we show λcr(r0) versus r0 for three cases: 1) when all the multipoles (2 ≤ l ≤ 50) are

accounted for, 2) when we consider only a sub-set 2 ≤ l ≤ 10, and 3) a sub-set 6 ≤ l ≤ 50.

Naturally, if we are at the center at SSCD, the anisotropy vanishes for any λ, which explains the

jump in λcr(r0) as r0 → 0. In addition there is the cancelation region, where the critical values of

the parameter are high. The SSCD with considerably large λ can be hidden in these two regions
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Figure 5.2: Left: The signal (SSWl +SISWl ) in [µK] versus r0 for λ = 1. We
demonstrate the cancellation of the SW and ISW effects for different mul-
tipoles: quadrupole (solid red), octupole (dashed green) and l = 4 (dotted
blue). Note that r0,l grows (slowly) with the multipole number. Right: The
critical parameter λcr(r0) versus r0 for different multipole ranges: 2 ≤ l ≤ 50
(solid red), 2 ≤ l ≤ 10 (dashed green) and 6 ≤ l ≤ 50 (dotted blue). This
illustrates that the main effect comes from lowest multipoles. In order to
account for higher multipoles we should have large values of λcr(r0).

without creating a strong anisotropy in the CMB. Excluding the lowest multipoles which may

be anomalous (see the discussion above) naturally results in a weaker signal and larger λcr(r0).

In addition, the peak is shifted from r0 = 4400 [Mpc/h], which is in the cancellation region of

l = 2, to around r0 = 5700 [Mpc/h], which is in the cancellation region of l = 6, l = 7 and l = 8

(r6 = 5400 [Mpc/h], r7 = 5600 [Mpc/h] and r8 = 5770 [Mpc/h] respectively).

The SW-ISW cancellation leads to another interesting effect that can help in detecting the

SSCD imprints. In the range 4200 [Mpc/h] < r0 < 5000 [Mpc/h], (2.55 < z < 3.75) the

lowest multipoles cancel out and therefore the temperature profile associated with the SSCD

is dominated by higher multipoles with smaller characteristic angular scale. The profile of the

temperature anisotropy in this case would be extremely sensitive to the location of the SSCD,

r0. If located in this range the SSCD manifests itself as a localized hot or cold spot (depending

on the sign of λ and on r0) in the CMB temperature map. The radius of such a “focused” spot

can be used to determine r0 as is illustrated in fig. 5.3 (left panel) where we are showing the

temperature profile δT
T (θ) =

∑
l=2 S

SW+ISW
l Yl0(θ) with λ = 1 for various values of r0 in the

interesting range. We see that, indeed, throughout this region the profile is dominated by fairly

small angular scale and that it is quite sensitive to r0, as was anticipated. For r0 = 4200 [Mpc/h],

the radius of the hot spot is about 32◦; for r0 = 4600 [Mpc/h], the radius is considerably smaller,
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The Cold Spot

Figure 5.3: Left: A hot spot created by a SSCD with λ = 1 in the range
r0 ∼ 4200 [Mpc/h] − 5000 [Mpc/h]. The radius of the spot decreases while
r0 increases. Right: An attempt to relate the SSCD to the WMAP cold
spot. We plot two published temperature measurements of the Cold Spot
(in “+”) and fit it with a profile created by a SSCD of λ ∼ −95 and located
at r0 ∼ 4700 [Mpc/h] (solid blue for 2 ≤ l ≤ 50 and 6 ≤ l ≤ 50 in dashed
red).

about 16◦, and the amplitude is weaker; at the location r0 = 4900 [Mpc/h] the radius of the

spot is tiny, 4.5◦, and the amplitude is so small that it is overshadowed by a cold ring that peaks

at about 20◦. By the time we reach r0 = 5000 [Mpc/h], the ring swallows the tiny central hot

spot and we have a fairly large cold spot of radius 45◦.

This focused spots could be an explanation for one of the CMB “anomalies”, which is the

WMAP cold spot [124, 125]. The cold spot is a nearly spherically symmetric region with an

approximate temperature δT = −73 [µK] at ∼ 5◦ [125] and an average temperature of δT ∼ −20

[µK] at angular radius of ∼ 10◦, [131]. This spot can be explained by imprints of the SSCD

with λ ∼ −95 located at r0 ∼ 4700 [Mpc/h] (see fig. 5.3 (right)). In our case the cold spot

is surrounded by a hot ring with a peak at about ∼ 30◦, which would be a smoking gun for a

cold spot generated by the SSCD, and, if detected by high-resolution CMB experiments (such

as ACT [132] and SPT [133]), might be used to verify our scenario and tell the SSCD apart

from other possible explanations, such as a localized void, e.g., [126], and a cosmic texture [134].

Unfortunately, the fact that the magnitude and shape of the hot ring, unlike the cold-spot, is

quite sensitive to the very low-l modes (2 ≤ l ≤ 5) makes this test less trustable.

Outside of the SW-ISW cancellation region, the main signal is due to the low-l modes, which

means that the SSCD creates a mild modulation of the CMB temperature anisotropy and has
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Figure 5.4: The pattern of δT (θ) created by a nearby (solid red) and remote
(dashed blue) SSCD, both of λ = 1. The former creates a diffused hot spot
(the ISW effect is dominant) and the latter produces a diffused cold spot
(the SW effect is dominant).

no prominent pattern (see fig. 5.4). Such a signature is not easily detectable in the real-space

anisotropy map of the CMB but can be seen in its decomposition in spherical harmonics.

5.3.2 Bulk Flow

Such a giant structure as discussed above should gravitationally pull all the matter towards its

center acting as a “Great Attractor”, which could explain the observed coherent bulk flow on

large scales. The only way to detect the coherent motion of our local neighborhood is with

respect to the surface of last scattering of the CMB (a remote fixed orienteer in the sky) using

the observed temperature diploe, l = 1 mode which we ignored so far. In total, the observed

dipole in our model has two contributions, Dobserved = DDoppler +DGravity, where the former is

due to the local motion of the observer relative to the last scattering surface, while the latter is

the l = 1 modes of the CMB anisotropy, given at leading order by DGravity = SSW1 +SISW1 . The

two dipole terms can be straightforwardly calculated in our setup from gravitational potential

of the SSCD.

The local motion gives a dipole

DDoppler =
√
3π

∫ 1

−1
dx x(n̂ · v⃗bulk − n̂ · v⃗lss(n̂)) (5.3.19)

where the velocities generated by the attractor are related to its gravitational potential in the
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way we discussed in chapter 2, eq. 2.2.12

n̂ · v⃗bulk = λ
C̃

H0rlss

(
5

3
−D1(0)

)
x

y
,

n̂ · v⃗lss = −λ 2C̃

3
√
zlssrlss

(1− yx)

1 + y2 − 2yx
. (5.3.20)

Note that our local motion, n̂ · v⃗bulk, is purely dipolar (one power of x = cos θ) whereas the

motion of the last scattering surface which is also attracted by the SSCD, n̂ · v⃗lss(n̂), contains

higher order multipoles as well. Comparing the two contributions to the DDoppler term we see

that the leading one is due to the local bulk motion of an observer, whereas the motion of the

last scattering surface appears to be sub-leading. Ignoring the latter component we can write

the doppler term as DDoppler ∼= 1.84 λC̃
H0r0

.

The second term (DGravity) depends on SSW1 and SISW1 are determined by 5.3.16 and 5.3.18

respectively. As follows from the discussion in the previous section, both SSW1 and SISW1 scale

like ∼ r0/rlss in the limit when this ratio is small. Therefore this term is negligible compared

to DDoppler in this limit, and at small distances (compared to the distance to last scattering

surface rlss) the observed bulk velocity in c = 1 units should satisfies

vobserved ∼= 0.0385
λ

r0
. (5.3.21)

Now let us compare this result to what we would expect to find in a pure ΛCDM universe, which

from our point of view is the noise. First, consider the root-mean-square dipolar flow associated

with a region of radius R predicted by the ΛCDM model (for a review see [135]). For large

R according to the linear theory the average bulk flow would be vrms ∼= 0.0183
R . For example,

for R = 50 [Mpc/h] the rms is vrms ∼= 110 [km/sec] (which is lower than what is observed by

surveys of such a radius). Comparing this with 5.3.21 we find that the peculiar velocity signal

of the SSCD is larger than the noise of ΛCDM if λ > 0.475 r0R . Note that this estimate is valid

for r0 ≥ 2R.

5.3.3 Signal to Noise

Naturally, it is interesting to see if our SSCD can induce the observed bulk flow without being

too bright on the CMB sky. Assuming the SSCD to be fully responsible for the generation of
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Figure 5.5: Left: The critical parameter λcr(r0) that gives S/N = 1 for
different multipole ranges 2 ≤ l ≤ 50 (solid red), 2 ≤ l ≤ 10 (dashed
green) and 6 ≤ l ≤ 50 (dotted blue) and the parameter λPV (r0) ( dashed-
dotted purple) which gives the observed bulk flow vbulk = 407 [km/sec].
See the magnified window for small distances in the upper-left corner of the
plot. Right: The CMB S/N associated with the SSCD for λPV (r0). The
S/N is calculated for different multipole ranges the solid blue line is for the
2 ≤ l ≤ 50 and the dashed red one is for 6 ≤ l ≤ 18.

the bulk flow we can constrain our free parameter λ for every location r0 of the SSCD. For small

r0/rlss, which gives the bulk flow of vbulk ∼ 407 km/sec [136], λ is linear in r0

λPV (r0) ∼= ±0.0352 r0. (5.3.22)

At larger distances we have to take into account the contribution ofDGravity as well. As expected,

DGravity has an opposite sign compared to DDoppler and thus it lowers the magnitude of the

total dipole DObserved . In fig. 5.5 (left panel) we show λPV (r0) for any r0. The linear behavior

at small distances is in accord with 5.3.22, while at larger distances λPV (r0) grows faster, as a

result of the partial cancellation between DDoppler and DGravity.

Given the values of λPV (r0) at each location it is useful to find locations r0 at which the

imprints of the SSCD are detectable in the background radiation. Figure 5.5 summarizes the

dependence of λcr, the value of the parameter which gives signal to noise of unity in the CMB,

on r0 in addition to λPV (r0), which guarantees the bulk flow. For locations at which λcr > λPV

is satisfied, the SSCD can induce the large peculiar velocity without leaving a significant imprint

in the CMB. For r0 such that λcr(r0) < λPV (r0) the imprints of the SSCD are detectable in

the CMB. On fig. 5.5 (right frame) we show the signal to noise by the SSCD which generates

104



the bulk flow. In particular, we stress the signal to noise from 6 ≤ l ≤ 18 multipoles which

are the “safe” modes and are on the one hand clean from the large-scale features in the CMB

at l < 6, and on the other hand are not contaminated by the galactic plane as are the higher

multipoles l > 18 due to the proximity of the direction of bulk flow to the galactic plane. Thus

the highest multipoles in this direction are “contaminated” by the galactic emission. Ignoring

modes with l > 18 (which correspond to angles under 10◦) significantly reduces the sensitivity

to the galactic noise.

As we can see from fig. 5.5, the signal is smaller than the noise if the SSCD is located

relatively nearby, i.e. r0 < 300 Mpc/h. In this case the SSCD can induce large peculiar velocities

at observer without leaving detectable imprints in the CMB. The Shapley supercluster, located

at around 140 Mpc/h (z ∼ 0.046) from us is believed to be partially responsible for the bulk

velocity [137,138], and is a candidate for the SSCD. Needless to say that it should be interesting

to see whether the Shapley supercluster fits the density profile discussed earlier. If indeed there

is a SSCD so close to us, then it is natural to suspect that there are others in the visible universe

and look for their imprints. At larger distances r0 > 300 [Mpc/h] signal to noise is everywhere

larger than unity and thus the imprints of such a defect should be detectable. There is, however,

a trough in the signal at r0 ∼ 5600 [Mpc/h] due to the SW-ISW cancellation, which is so extreme

where S/N ∼= 2 that such a SSCD would be hard to detect. Unfortunately current data is not

sufficient to reach a definite conclusion about presence of the SSCD. Hopefully future Planck,

deeper galaxy surveys and future radio observations of the emission of neutral hydrogen will

impose more severe constraints on pre-inflationary relics.

5.4 Adding CMB Weak Lensing

In addition to the deformations of the one-point function of the CMB temperature field (as in

the case of the SW and ISW anisotropies in the CMB and of the bulk flow) the SSCD acts as an

anomalous gravitational lens: it bends the trajectories of the CMB photons while the radiation

travels from the last scattering surface to an observer. Weak lensing is sensitive to the total

projected mass along the line of sight and therefore it should be a powerful tool for detection of

massive structures such as the SSCD.

Weak lensing of the CMB by a large-scale structure in models that assume statistical isotropy
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(such as ΛCDM), which assures that no preferred direction exists, is well studied. In this case the

weak lensing acts to smear the peaks and troughs of the CMB power spectrum by convolving

different scales. Here we are interested in weak lensing by a very different system, in which

statistical isotropy is broken by a single anomalous structure. Our discussion in this section is

general (and summarizes our conclusions from [32]) and applies to any kind of an anomalous

lens such as the SSCD, a giant void or cosmic defects, which we refer to as “single lens”. We

focus on a case of a large spherically symmetric structure.

Weak lensing by a single lenses was a subject of debate in literature, e.g., see discussion

in [139], [140] and [141], stimulated by the existence of the cold spot in the CMB. As antic-

ipated, a structure which breaks statistical isotropy acts in a similar manner to the ΛCDM

random structure: it modifies the power spectrum of the CMB temperature field, but as we

show in section 5.4, the character of this modification is very different from the one by randomly

distributed structure within the ΛCDM scenario. In the following we derive observational con-

straints imposed on an anomalous structure by the weak lensing of the CMB .

Ideal Signal to Noise

We start by considering an imaginary experiment in which observer can fully reconstruct the

underlying lensing potential ψ eq. 2.3.16, which measures total deflection of a ray integrated

along the line of sight and which includes contributions of cosmic web and of the anomalous

lens. The deflection potential field generated by a network of randomly spread structure, which

grows from a standard set of initial conditions from inflation, is statistically isotropic and follows

a Gaussian distribution with vanishing one-point function [42–44]

⟨ψΛ
lm⟩ = 0, ⟨ψΛ∗

lmψ
Λ
l′m′ ⟩ = δll′ δmm′Cψl , (5.4.23)

where as usual we expand the deflection potential, which is two dimensional function on the

sky, using spherical harmonics ψΛ(n̂) =
∑

lm ψlmYlm(n̂) and the angle brackets stand for an

ensemble average. On the other hand, the single lens contributes a non-random deflection which

adds a non-vanishing one-point function δψlm to the total deflection potential, which reads

ψΛ
lm → ψΛ

lm + δψlm. (5.4.24)
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The signal to noise for the detection of a single anomalous lens in an ideal experiment is thus

(
S

N

)2

Ideal

=
∑
lm

|δψlm|2

Cψl
, (5.4.25)

which in a case of a spherically symmetric anomalous lens holds only m = 0 modes.

Although the expansion in the basis of spherical harmonics is exact, it is often more con-

venient to discuss lensing using flat-sky approximation, in particular when only a small flat

patch of the sky is discussed/observed. In this case we expand using two-dimensional Fourier

transform. In flat-sky variables eq. 5.4.23 is takes the form

⟨ψΛ(l)⟩ = 0, ⟨ψΛ∗
(l)ψΛ(l′)⟩ = (2π)2δ(l− l′)Cψ(l), (5.4.26)

and the ideal signal to noise becomes

(
S

N

)2

Ideal

=

∫
dl

(2π)2
|δψ(l)|2

Cψ(l)
, (5.4.27)

where l is a two-dimensional momentum.

Signal to Noise from a Real Experiment

When trying to measure the lensing signal of an anomalous structure from a temperature map,

one needs to be careful. In fact, some examples found in literature (e.g. [141]) did not treat the

signal to noise for lensing by a void and a texture correctly which led to an overestimation of their

effect. Here we follow the discussion in [32] and show that one of the common mistakes was

to ignore non-Gaussianity of observed temperature maps. We first demonstrate the mistake,

ignoring the fact that lensing by random structure within the ΛCDM model introduces non-

Gaussianity to the temperature field. We show that in this case our results are self-inconsistent.

We then apply methods used in field theory to fix the problem and find a solution.

The effect of a single lens with a deflection potential δψ on the CMB temperature is to redis-

tribute the temperature with respect to δψ and to change the correlation function accordingly.

Expanding in powers of δψ, and assuming that the single lens provides a small perturbation to
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ΛCDM cosmology, we have

T SL(n̂) = T (n̂) +∇iδψ∇iT (n̂) +
1

2
∇iδψ∇jδψ∇i∇jT (n̂) . . . (5.4.28)

where T is the temperature field lensed by random cosmic web and T SL is the temperature

further lensed by the single lens. The temperature anisotropy in this case T SL − T is a random

field with vanishing mean value ⟨δT (n̂)⟩ = 0, unlike what we had in the ideal case. Therefore we

cannot apply the same methods to calculate the signal to noise as we used above. Instead we use

an expression which gives the signal to noise when the variance of the Gaussian distribution is

modified, assuming the temperature field T to be Gaussian, which is a common but not realistic

assumption. Using the conventional methods based on the likelihood function and summarized

in the Appendix A, we can derive the expression for the signal to noise.

Here we confine ourselves to the flat-sky approximation, which is more convenient. We first

transform the temperature field into harmonic space, to get a familiar result [43,44]

T SL(l) = T (l)−
∫

dl′

(2π)2
l′ · (l− l′)δψ(l′)T (l− l′)

−1

2

∫
dl′

(2π)2
dl′′

(2π)2
l′ ·

[
l′ + l′′ − l

]
l′ · l′′T (l′)δψ(l′′)δψ∗(l′ + l′′ − l). (5.4.29)

It is easy to see that indeed ⟨T SL(l)⟩ = 0 and that the covariance matrix, defined as Cov(l1, l2) ≡

⟨T SL∗(l1)T
SL(l2)⟩, is modified. Equation A.2.12 implies that to calculate the signal to noise to

second order in δψ we need to know Cov(l1, l2) only to first order, which is relatively easy to

calculate. For convenience we first define γ(l1, l2) ≡ (l1 + l2) · [l1C(l1) + l2C(l2)], so that the

off-diagonal terms of the covariance matrix are

Cov(l1, l2) =
l1 ̸=−l2

γ(−l1, l2)δψ(l2 − l1), (5.4.30)

whereas the diagonal terms of the deformation vanish leaving the diagonal unperturbed and

equal to Cl. Thus using eq. A.2.12 for the signal to noise, which assumes gaussian distribution

of fluctuations in temperature, we find that it is

(
S

N

)2

Temp

=
1

2

∫
dl

(2π)2
dl′

(2π)2
|γ(−l, l′)δψ(l′ − l)|2

C(l)C(l′)
. (5.4.31)
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In the case of a spherically symmetric deflection potential, such as the one created by SSCD,

for which δψ(l) = δψ(l) is satisfied, one can write eq. 5.4.31 as

(
S

N

)2

Temp

=
∑
l

2l + 1

2

Sl
Cl
, (5.4.32)

where the signal is

Sl ≡
∫

dl′

(2π)2
|δψ(l′)|2

2C(l′)

[
l′ ·

(
lC(l) + (l′ − l)C(

∣∣l′ − l
∣∣))]2 . (5.4.33)

In fact, it turns out that the realistic signal to noise, which we have just calculated exceeds

the ideal signal to noise for high-resolution experiments, such as Planck, SPT and ACT, with 6’

resolution or better (see fig. 5.7 which we explain in details bellow). This is a clear evidence that

the approach taken above, which is based on an assumption that the observed CMB temperature

is a Gaussian field, is not physical. As anticipated and as we discuss below, this behavior is

regulated when accounting for the non-Gaussianities in the temperature maps [32].

It is well known that weak lensing adds non-Gaussianity to a temperature field even if initial

fluctuations from inflation were Gaussian [43, 142]. Distortions of the initial temperature field

by random cosmic web lead to a non-trivial connected four-point function < TTTT >c. Within

ΛCDM this non-Gaussianity is expected to affect the temperature anisotropy at small scales

l ≥ 1000. At l ∼ 2000 it modifies power spectrum of the CMB by about 5% [142] relatively

to the power spectrum expected if the temperature were Gaussian. In fact, very recently this

effect was measured by ACT [6] and SPT [143], both having only partial sky coverage. At the

moment there is no disagreement with theory found. As we show below, when statistical isotropy

is broken (e.g., by adding an anomalous lens), the non-Gaussianity due to weak lensing becomes

more significant. Therefore this method can be used to constrain theories in which such single

lenses are present.

As we found in [32], adding a second-order correction to the signal to noise expression,

which takes care of the non-Gaussianity of the temperature field, solves the puzzle and regulates

the behavior of signal to noise. We found a non-trivial approach to handle the problem of

calculating corrections for the signal to noise, which arise from the nontrivial four-point function

of temperature field, using Feynman diagrams. In fact, the expression 5.4.32 is equivalent to a
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one-loop diagram if we adopt the following set of Feynman rules associated with this Gaussian

theory:

1. Assign a two-dimensional momentum to each leg in the diagram, and a propagator, C(l),

which corresponds to the ΛCDM (lensed) temperature power spectrum.

2. The single lens adds a two-leg “interaction” vertex γ̃(l1, l2)/2 to the theory, where γ̃(l1, l2) =

γ(l1, l2)δψ(l1 + l2)/C(l1)C(l2)

This vertex mixes between two momentum modes.

3. Multiply each diagram by a proper symmetry factor. The relevant symmetry factors, and

their derivation are elaborated on in Appendix B of [32].

The Gaussian calculation of the previous section is equivalent to the one-loop diagram on fig. 5.6

(left frame). Namely, it is a vacuum energy diagram in the presence of an external background

field (the one that breaks statistical isotropy) induced by the single lens. As a consistency check

we can now re-calculate the signal to noise using our Feynman rules, which would be a one loop

diagram, and show that the result is equivalent to our signal to noise in the Gaussian case (we

need to use the fact that C(l) and ψ(n̂) are real).

Next step is to account for the non-Gaussianity, introduced to the theory by adding a four-leg

vertex. Hence we have to supplement our Feynman rules with

• ΛCDM weak lensing induces a four-leg vertex

Being interested in the leading order contribution (in terms of δψ insertions) to the signal to

noise, we need to take diagrams that have two vertexes of δψ and expand in number of loops.

In principle, taking all the loops into account would give us the exact result for the signal to

noise of the single lens. However, in [32] we are satisfied by calculating the two-loop correction
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Figure 5.6: Visualizing the S/NTemp as vacuum-energy Feynman diagrams
up to 2-loop order following the Feynman rules derived here. The diagrams
here are schematic, and do not account for some complication due to ΛCDM
four-leg vertex substructure. Left The one-loop (Gaussian) part of the S/N.
Right: The two-loop diagrams are the leading non-Gaussian contribution.

to the signal to noise due to computational complexity of higher loop diagrams. The relevant

Feynman diagrams are those of fig. 5.6 (right frame).

In standard field theories (e.g. ϕ4 theory) such diagrams are easy to calculate. Here, however,

the vertex is rather complicated. The reason is that it has substructure that follows from

the relation between the unlensed and the lensed correlation functions in ΛCDM, leading to

topologically distinct diagrams. Here we quote the results referring the reader to Appendix B

of [32] for detailed calculations. There are four different diagrams which contribute to the 2-loop

S/NTemp. One of these is positive, and the other three are negative. The sign of the overall

contribution of the 2-loop correction to S/NTemp is negative, taking the value of the total signal

to noise down and thus resolving our puzzle, as is shown on fig. 5.7. Another curious feature of

this figure is that the leading non-Gaussian contribution becomes significant already at l ∼ 900

and that for 1000 < lmax < 1500 there is an approximated plateau in the accumulated signal to

noise. The value of (S/N)2 at this plateau is about 1/10 of the ideal (S/N)2. For lmax > 1500 the

accumulated S/N starts to drop, which is a nonphysical artifact due to the fact that we neglected

higher-order corrections. We expect higher (in loop counting sense) non-Gaussian corrections to

regulate this behavior and to stabilize the signal to noise for lmax > 1500. Needless to say that

the final signal to noise should be always below the ideal limit. Although the conclusions for fig.

5.7 were based on an analysis of a single-mode deflection potential, they do not depend on the

multipole number of the mode, l0, of this single lens and therefor are expected to be generic for
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Figure 5.7: The puzzle and its resolution. Left: We show the ideal accu-
mulated signal to noise normalized to unity (red dashed), Gaussian part of
(S/N)2Temp (blue solid), and (S/N)2Temp (cyan solid and dashed) to leading
non-Gaussian contribution for l0 = 50. The cyan line becomes dashed at the
point where the overall non-Gaussian contribution to the integrand becomes
negative. Right: Here we show the significance of the 2-loop contribution to
the S/NTemp. Blue line stands for the 1-loop (Gaussian part) and the cyan
line is (1+2)-loop which accounts for the leading order of the non-Gaussian
calculation.

any anomalous deflection potential. Therefore for any single lens an estimate

(
S

N

)
Temp

∼ 1√
10

(
S

N

)
Ideal

(5.4.34)

for the realistic signal to noise should be a good approximation.

In [32] we apply our findings to the cases of spherically symmetric anomalous structures

popular in literature: a cosmic texture and a localized void proposed as possible sources to the

WMAP cold spot in [126,134,139,141,144]. In our paper we showed that for both of the examples

the signal was strongly overestimated (due to the neglected non-Gaussianity) and becomes too

weak to explain the anomalous temperature of the cold spot when the non-Gaussianity is added.

In the case of the SSCD, gravitational lensing appears to be a powerful probe, since it mea-

sures the total (integrated) deflecting mass which is huge for SSCD. In fact, weak gravitational

lensing contains all the information about the angular distribution of mass in the SSCD. On

fig. 5.8 we see the estimated signal to noise for the SSCD of λPV (r0), i.e. of the amplitude

calibrated so that to generate the observed bulk flow. Here we used the speculative relation

for the realistic signal to noise in the flat-sky approximation to evaluate the prospects for its

observation via weak gravitational lensing. The information which we can extract from lensing
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Figure 5.8: The signal to noise for the SSCD which creates the observed
bulk flow. We show S/N from the anisotropies in the CMB via SW and ISW
(black solid curve), the ideal S/N from lensing (blue solid) and the realistic
S/N from lensing accounting for the non-Gaussianity of the temperature
field (blue dashed).

would be especially useful if the SSCD is located in the SW-ISW cancelation region, where the

S/N from lensing is higher than that from the SW and the ISW effects. This result is an approx-

imation only and should not be taken as a solid prediction. The main reason is that the flat-sky

approximation does not work very good in the case of the SSCD which extends all over the

sky and thus is better described within the full-sky approximation. The correct way to treat it

would be to do a complete calculation in the full-sky approximation, as in [42], see Appendix A

of [32] for the 1-loop calculation, however it is difficult to do analytically. Therefore, the authors

of [145] used numerical and statistical methods to study the signature of the SSCD via lensing

in mocked WMAP maps, assuming the SSCD is also responsible for the ring-score anomaly [122]

and the observed bulk flow. The authors showed that there is an opportunity window for such

a structure and it can be located 5400 − 6100 [Mpc/h] away from us having signal to noise of

order ∼ 2− 3.

5.5 Discussion

We have shown that PIP with λ = 1 − 100, located either close to us at r0 < 300 [Mpc] or

far away at 5000 < r0 < 6000 [Mpc] can both generate the bulk flow and be hidden in the

CMB sky. Detecting such a structure, either via its weak lensing signal or via its signature

in the 21-cm (which is out of the scope of present work), would be an exciting probe of the
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pre-inflationary epoch and probably of string theory as well. Another interesting signature of

PIP could be its signal in the B-mode polarization of the CMB, which however is expected to

be negligible (according to unpublished results, private communication with Dr. B. Rathaus).

Future experiments will provide new unique information with which we could further constrain

pre-inflationary relics and other exotic scenarios. For instance, Planck satellite has wider fre-

quency bands than WMAP, which should permit a better view of the galactic plane and allow

us to glance beyond it. In addition, future deeper large scale surveys will provide a better

bulk flow measurement by decreasing the root-mean-square peculiar velocity error, which would

probably allow to detect convergence of the flow on the “Great Attractor”. This would specify

the location of the hypothetical SSCD more precisely. Moreover, future 21-cm experiments will

provide a three-dimensional mapping of the Universe at high redshifts, which would open a

unique possibility to search for the interesting signature in the new unexplored domain.

So far we have discussed only the signature of pre-inflationary massive particles, as a generic

prediction of the pre-inflationary epoch. However there are other relics, that could exist in

our Universe before the beginning of inflation. For instance, domain walls appear as a result

of broken symmetries [146] in field theories, high energy physics and string theory. Domain

walls may appear naturally in our Universe and bias the dynamics of cosmic evolution. The

main difference between cosmological signature of a domain wall and that of a pre-inflationary

particle is the topology of the problem. If a pre-inflationary domain wall happens to be within

our light-cone, it should cross the surface of last scattering, imprinting a profound ring pattern

on the CMB sky. The closer the domain wall is to us, the larger should be the angular size

of the ring. Interestingly enough, existence of ring-like pattern in the CMB temperature maps

was reported in [122], where distinctive cold (of θ ∼ 80◦) and hot (of θ ∼ 110◦) rings were

found. This motivated us to search for the best-model parameters in the “pre-inflationary wall”

scenario looking for the best match to the ring score from [122]. We scanned the parameter

space (which consists of the closest distance to the observer r0, tension of the wall and duration

of inflation) with an aim to find the best theoretical fit to the ring score. We were able to find

a set of parameters for which the expected profile was in a relatively good agreement with the

CMB data, however such a domain wall would be too strong in terms of the bulk flow. The

flow would be 1000 times larger than the observed one and therefore such a domain wall (which

predicts both the CMB rings and the bulk flow) is ruled out.
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To complete the discussion we would like to mention that particle production during inflation

is another widely studied field, e.g., [147, 148]. However in this case, as opposed to the case of

a single pre-inflationary relic, particles are produced during the course of inflation and affect

perturbations on smaller scales than in our case. In addition, they are less diluted by the Hubble

expansion and therefore are expected to be more numerous, affecting power spectrum rather than

the mean value of the CMB temperature field, as happens in the case of a pre-inflationary relic.
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Chapter 6

Summary

The first part of this thesis aims to improve our understanding of the high redshift Universe

and in particular of the epoch when the first stars formed. The early Universe is overall a dark

and cold place with rare sites in which first stars form and the starlight slowly heats up the

gas. In fact we know very little about this epoch, since on the one hand it is unconstrained by

observations, while on the other it is very challenging to model theoretically. The main novelty

of the work presented here (which was published in [24,28,29]) is to combine analytical and nu-

merical computational methods with the results of small-scale non-linear numerical simulations

to generate realistic images of the primordial Universe at redshifts z ∼ 10− 60. This approach,

which allows us to both simulate large volumes (for instance in this thesis we presented results of

our simulation of comoving volume (∼ 400 Mpc)3) and include clustering and star formation, is

a unique way to make realistic predictions related to the large scale structure in the primordial

Universe. We are now able to track the mutual evolution of the stellar population and radiative

backgrounds in one common framework accounting for the negative feedback of ultra-violet pho-

tons on star formation and adding biases due to influences such as large-scale density modes and

supersonic relative flows between gas and dark matter on large scales. This approach gives us

an opportunity to study large scale fluctuations in stars and radiative backgrounds, from which

we are mostly interested in the fluctuations in the redshifted 21-cm background, which on the

one hand traces the distribution of neutral hydrogen at high redshifts while on the other hand

has vanishing optical depth and thus can be measured today.

Although many aspects of the astrophysical processes that happen at high redshifts are

still unknown, in our simulation we implemented as many details of these processes as possible
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given the running time and memory constraints. We first analyzed the effect of both the mean

overdensity and the relative velocities on star formation in 3 Mpc regions, for which the velocity

field is coherent, using statistical and analytical methods and relying on results of small-scale

simulations. We accounted for all three distinct effects of the velocity on structure formation,

which includes suppression of the halo abundance, suppression of the gas fraction in halos and

suppression of star formation. To add the latter effect we designed a fit to the outputs of

nonlinear numerical simulations which explored the effect of vbc on the lower mass cutoff of

star-forming halos [21,22]. Quantitatively, we found that the suppression of the halo abundance

has a large effect on both star-forming halos and halos that do not form stars, while the boost

in the cooling mass primarily affects the star-forming halos. On the other hand, the suppression

of gas content has a strong effect on star-less halos and a small effect on stars and star-forming

halos. In addition we have confirmed that the primordial stars were highly clustered due to

both the large scale density modes and the supersonic relative velocities; stars are expected to

form earlier in overdense regions with a low magnitude of vbc than in the underdense regions

with high vbc. Our results imply that although the effect of the relative velocities decays with

time and is not apparent today, it was of great importance at high redshifts z ∼ 20 where the

velocity caused order unity fluctuations in the stellar density. For instance, we found that at

redshift 20, 95 percent of stars are formed in 77 percent of the volume of the Universe (divided

into (3 Mpc)3 patches). In addition, the age of the oldest stars in regions with various vbc is

expected to vary. Relying on statistical arguments and taking into account the huge volume of

the observable Universe we showed that the very first luminous object was likely formed when

the Universe was only 33 Myr old (at z ∼ 65) and that the formation of the very first star was

postponed by 11 percent (in redshift) due to the relative velocity, which is a significant delay.

Our next step was to generate sets of realistic initial conditions at recombination for the

mean density and supersonic relative velocities in ∼ (400 Mpc)3 boxes with a resolution of 3

Mpc taking into account correlations between the two fields. These large-scale fields are linear

at our redshifts of interest and, thus, are easily evolved to lower redshifts. We then used the

method outlined above to populate each pixel with a distribution of stars at every redshift with

respect to the large scale density and velocity modes. Next, we evolved the stellar fractions

and the radiative backgrounds with redshift starting from z = 60 and finishing at z = 10,

while accounting for the negative feedback to star formation by the Lyman-Werner photons.
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In our calculation we incorporated results of additional small scale simulations. For instance,

to model the impact of the Lyman-Werner photons on star formation we made use of a fit to

the minimal cooling mass of a halo as a function of the Lyman-Werner intensity provided by a

simulation [101] which studied star formation in the background of a constant Lyman-Werner

flux. We adopted and modified this relation to include the dependence of the minimal cooling

mass on vbc and to allow for a delayed response of the star formation rate to the intensity of the

background Lyman-Werner flux. To estimate the Lyman-Werner flux in each pixel we first used

the expected stellar spectrum of Population III stars from [64] (based on the results of [102]).

Then we calculated the effective optical depth to a source where we included the full list of 76

relevant Lyman-Werner lines from [56]. In addition we used data from [65] to better evaluate

the heating fraction fheat which we used to estimate the X-ray background. We tried to stay

on the safe side choosing the most conventional astrophysical parameters related to the high-

redshift Universe (such as the star formation rate and the X-ray heating efficiency). However

these parameters are highly unconstrained and may vary by one or two orders of magnitude. We

are currently working on a project which will explore the full space of astrophysical parameters.

Interestingly enough, it turns out that the properties of the expected signal significantly

depend on the delay of the negative feedback as well as on the presence of vbc in a model

universe. The small-scale physics apparently has a strong impact on large-scale signals and

on the global evolution of the Universe and should be better modeled in the first place to

allow for a more reliable theoretical exploration of the large-scale expected signal. Despite the

uncertainties, our method allows us to predict the relative timing between critical events in the

thermal history of the Universe such as the ordering of the radiative transitions. For our choice

of model parameters, the Lyα transition is expected to happen at redshift z ∼ 25 (based on

our preliminary results), the Lyman-Werner transition is expected at z ∼ 19 − 24 and, finally,

the heating transition is predicted to be at z ∼ 15− 17 (which, as anticipated, depends on the

nature of the Lyman-Werner feedback).

Using the information which we recorded from our simulation we were able to calculate the

evolution of the inhomogeneous gas kinetic temperature as well as the 21-cm signal in each

pixel, and to study the thermal evolution history of the Universe as well as the large scale

fluctuations in the 21-cm signal. Clearly, the power spectrum of the signal from high redshifts

is characterized by fluctuations on very large scales corresponding to the ∼ 100 Mpc scales of
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BAOs imprinted mainly by vbc. Overall our results show that the expected 21-cm signal from

the epoch of primordial star formation is strong enough to be observed even with present-class

instruments with the best signal to noise of S/N ∼ 3 at z ∼ 17 and k ∼ 0.04 Mpc−1. The design

of existing telescopes do not allow them to observe the long wavelengths of ∼ 4 meters needed to

map the hydrogen distribution at z ∼ 20; however this redshift range should be accessible with

next-generation telescopes. Luckily the promising prospects for the 21-cm signal observations

from the epoch of the primordial star formation are generic and are not sensitive to the choice

of the feedback, whose main role is to shift our predictions in time by ∆z ∼ 2.

Our results confirm that further numerical study of the high-redshift non-linear processes

is essential in order to allow the predictions for the 21-cm signal to converge. In addition to

constraining the effect of the negative feedback on star formation (which must be simulated in a

framework where vbc is included together with JLW since both components have a similar effect

on the minimal cooling mass of a star forming halo) other astrophysical processes that take

place in the high-z IGM should be better studied as well. This includes the initial mass function

of the first stars, fraction of gas converted into stars for halos of different masses, and a better

understanding of the heating scenario. Naturally, the sensitivity of the 21-cm emission to the

parameters also means that it should be a great tool for constraining the primordial Universe.

In the final part of this thesis we considered a different aspect of early-time cosmology related

to the character of initial conditions for structure formation. In particular, we discussed the

possibility to detect a modification of the initial conditions generated due to the interaction of

the inflaton with a pre-inflationary relic. Such a pre-inflationary relic may be a generic product

of some setups of string theory as well as of other high energy theories. Therefore detecting

cosmological imprints of the epoch preceding inflation could bring us closer to an understanding

of the origins of the Universe.

In this thesis, based on our works [31] and [32], we explored cosmological imprints of one

type of the pre-inflationary relics, massive point particles, which can directly or indirectly couple

to the inflaton field and thus modify the probability distribution function of its quantum fluctu-

ations. The leading effect of such a modification is to add a non-trivial one-point function to the

distribution, leaving the variance intact. The added deterministic perturbation to the inflaton

field plants a giant spherically symmetric region of a characteristic scale of ∼ 100 Mpc which

adds a very mild logarithmic modulation to the perturbation of the gravitational potential in
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the post-inflationary Universe. This model has only two new parameters with respect to the

plain inflation, one of which, λ, is fundamental and depends on the properties of the particle and

its coupling to the inflaton, while the other is geometrical, r0, and defines the distance between

an observer and the original location of the point particle (the center of the great spherical

structure). If such a spherically symmetric structure occurs within our Hubble horizon it may

leave a detectible signature, which we extensively discussed in this thesis. We studied its impact

on cosmological observables, such as the angular modulation of the CMB mean temperature,

generation of coherent matter flows on large cosmic scales, and the modulation of the CMB

power spectrum on small scales due to the effect of weak lensing. We used joint data of the

observed bulk flow and temperature anisotropies of the CMB to constrain the model parameter

λ for each location r0. We concluded that there are two possibilities for λ and r0 for which the

giant structure wold not leave a strong signature in the CMB but would be able to generate the

observed bulk flow: the first is a nearby relatively small object of |λ| ≤ 10 located at r0 ≤ 300

Mpc, and the second option is a remote structure at 4400 ≤ r0 ≤ 4900 Mpc which is huge

even in the cosmological sense with |λ| ∼ 170 . Gravitational lensing by such a structure places

additional constraints on the model parameters and may yield a large signal to noise also in the

SW-ISW cancellation region where the CMB anisotropy vanishes. In particular, as was found

in [145], which studied the lensing signature of the pre-inflationary relic in simulated Planck-like

maps assuming it was responsible for the giant ring anomaly [122] as well as for the bulk flow, the

signal to noise from lensing is S/N ∼ 2− 3 for locations 5400 ≤ r0 < 6100 Mpc. The non-trivial

set of initial conditions from inflation may also lead to detectable non-Gaussianity or B-modes in

the CMB and/or detectable imprints in the redshifted 21-cm signal which would be proportional

to (1+ δstructure). The latter probe, due to its properties, may provide a three-dimensional copy

of the overdensity of this anomalous structure even if it is too small to generate the bulk flow

and to imprint spots on the CMB sky. We leave these signatures for future research.

An interesting method, which we developed while exploring weak lensing of the CMB by a

generic anomalous lens and which we applied later to impose constraints on lensing by the pre-

inflationary relic, is to apply field theory tools to estimate the signal to noise of an anomalous

lens. We demonstrated that one must include the non-Gaussianity of the temperature field lensed

by the random cosmic web while estimating the signal for a “single” lens and that this can be

done by writing down a two loop Feynman diagram (which is the leading order correction to the
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one-loop diagram, equivalent to the signal to noise for a Gaussian temperature field). Ignoring

the non-Gaussianity would lead to overestimation of the lensing signal and to a puzzling behavior:

in this case, the signal derived from lensing reconstruction out of temperature maps exceeds its

upper limit from an “ideal” experiment.

The research outlined in this thesis will hopefully be of future interest and will stimulate

work in both areas presented here. In particular, our first subject will hopefully stimulate future

radio experiments to focus on the high redshift domain z > 15 as observational prospects for this

range are very promising. In addition it could stimulate new small-scale nonlinear simulations of

star formation which are essential for making more precise predictions for the 21-cm signal from

high redshifts. Our second topic explores a very exciting possibility to use cosmology to test

the ultra-violet limit of high-energy theories, which is not accessible in ground-based particle

accelerators. In the current age of precision cosmology, when more and more sophisticated

cosmological probes are on the way, this field may soon provide an exclusive view on the origins

of our Universe.
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Appendix A

Signal to Noise

Here we review two deformations of a Gaussian distribution: (1) deformation of mean value and

(2) deformation of the covariance matrix and derive the corresponding expression for signal to

noise in each case which we apply to treat CMB weak lensing.

The starting point is a system of n Gaussian fields with vanishing mean values ⟨xi⟩ = 0,

i = 1..n, and non-trivial covariance matrix ⟨xixj⟩ = Cij0 . The likelihood function associated

with this system is [149–151]

L0 =
1

(2π)n/2
√
detC0

exp

(
−1

2
xTC−1

0 x

)
. (A.0.1)

For simplicity we take C0 to be a diagonal matrix, which is a standard case in linear perturbations

theory.

Generally speaking, there are two classes of deformations which can be applied to this system

that do not induce non-Gaussianity, and which we discuss below. Since these deformations are

from one Gaussian system to another Gaussian system the S/N associated with them can be

calculated exactly.

A.1 Deformation of the Mean Value

The Gaussian fields are shifted by constants (i.e. non-random variables)

xi → x̃i = xi + bi. (A.1.2)
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(This is a widely used transformation which we used in many parts of chapter 5, in particular to

calculate the signal to noise by the SSCD in the CMB and bulk flow as well as the ideal signal

to noise for lensing.) This deformation modifies the mean values while leaving the covariance

matrix intact

⟨x̃i⟩ = bi, ⟨(x̃i − ⟨x̃i⟩)(x̃j − ⟨x̃j⟩)⟩ = Cij0 . (A.1.3)

The Gaussian likelihood function of the deformed system is

L(b) = 1

(2π)n/2
√
detC0

exp

(
−1

2
(x+ b)TC−1

0 (x+ b)

)
. (A.1.4)

To calculate the S/N associated with this deformation we proceed in the familiar way, using

Fisher information theory (e.g. [149–151]). We define

δ(b) ≡ −2 [log(L(b))− log(L0)] =
(
xTC−1

0 b+ bTC−1
0 x+ bTC−1

0 b
)
, (A.1.5)

which is nothing but the χ2 [149, 151], and calculate its mean value which is the desired S/N

ratio (
S

N

)2

(b) ≡ ⟨δ(b)⟩ =
∫

dxδ(b)L0 = bTC−1
0 b. (A.1.6)

This class of deformations is relevant when searching for a known template, b, in the data.

A.2 Deformation of the Covariance Matrix

We leave the mean values intact, ⟨xi⟩ = 0, and deform the covariance matrix

C0 → C. (A.2.7)

In general, the deformed covariance matrix C is non-diagonal. The relevant likelihood function

reads

L(C) = 1

(2π)n/2
√
detC

exp

(
−1

2
xTC−1x

)
. (A.2.8)

To calculate the S/N we proceed in the same fashion as before. We define

δ(C) ≡ −2 [log(L(C))− log(L0)] = xT
(
C−1 − C−1

0

)
x+ log (detC/detC0) , (A.2.9)
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and calculate its mean value

(
S

N

)2

≡ ⟨δ(C)⟩ =
∫

dxδ(C)L0 = Tr
(
C0C

−1 − 1
)
+ log (detC/detC0) . (A.2.10)

As is often the case, weak lensing included, one can expand C in some small expansion

parameter ϵ as

C = C0 + ϵC1 +
ϵ2

2
C2 + ... (A.2.11)

Expanding A.2.10 in ϵ we find that the linear term vanishes due to cancellation between the two

terms in the right hand side of eq. A.2.10. This follows from the fact that C = C0 is a local

minimum. What is somewhat surprising is that the leading term, that scales as ϵ2, depends only

on C1 (and not on C2) (
S

N

)2

=
ϵ2

2

∑
ij

|Cij1 |2

Cii0C
jj
0

. (A.2.12)

A familiar situation, which is irrelevant to our case, is that of diagonal C1. Then the leading

S/N reads (
S

N

)2

=
1

2

∑
i

(
δCii

C0
ii

)2

, (A.2.13)

with δCii = ϵC1.

Applying this result to the Gaussian statistically isotropic CMB temperature (where i runs

over l and m) we get the familiar expression

(
S

N

)2

=
∑
l

(
δCl

∆C0
l

)2

, (A.2.14)

where ∆C0
l = Cl

√
2/(2l + 1).
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 תקציר

הכוכבים הראשונים ותקופת  בתזה זו אנו דנים בתקופות המוקדמות ביותר בתולדות היקום כגון תקופת היווצרות

אנו חוקרים את האובייקטים הנוצרים בתקופות . קוסמית בה תנאי ההתחלה לבניית מבנה ביקום נוצרוהאינפלציה ה

בנוסף אנו מפתחים כלים לגילוי הלא . האלו ואת החתימה האופיינית שלהם בסיגנלים הקוסמיים הנמדדים היום

 . ישיר של האובייקטים האלו

כלומר , ות של הכוכבים הראשונים בתולדות היקוםבחלק הראשון של התזה אנו מתמקדים בתקופת ההיווצר

כמו התפלגות הכוכבים , אנו מנתחים את פרטי התקופה הזאת. מיליון שנה לאחר המפץ הגדול 03-033בתקופה 

בנוסף לכך אנו מנבאים את החתימה שהכוכבים . קרינה הנפלט על ידי מקורות האור האלוההראשונים ושדה 

. מ של המימן האטומי הממלא את רוב היקום בתקופה המדוברת''ס-02-קו ה הראשונים משאירים בסיגנל של

לכן . תוצאותינו מראות שהסיכויים לגילוי חתימת הכוכבים הראשונים באות של המימן האטומי הם מאוד גבוהים

ע אלינו מעידן הכוכבים יהמחקר הזה צפוי לעודד את המחקר התצפיתי העתידי הנועד לגלות את הסיגנל המג

     . ראשוניםה

אנו מנתחים מקרה מאוד מסוים . קוסמיתהאינפלציונית ובאינפלציה -בחלק השני של התזה אנו דנים בתקופה קדם

האינטראקציה בין החלקיק לבין . אינפלציוני בודד-שבו מוסיפים למנגנון הסטנדרטי של אינפלציה חלקיק קדם

ל תנאי ההתחלה ולהיווצרות של מבנה בודד ענק בנוסף ש שינויםגורמת ל( אינפלציהההמניע את )השדה הסקאלרי 

לפיכך גילוי חתימת החלקיק . המוטיבציה להוספת החלקיק נובעת במקור מתורת המיתרים. לגלקסיות הרגילות

הקשר בין היקום , בעצם. בסיגנלים קוסמיים שונים עשוי לצמצם את מרחב הפרמטרים הענק של תורת המיתרים

הוא כלי בלעדי ( שאנו מנתחים במסגרת העבודה הזאת)הסיגנלים הקוסמיים הנמדדים היום  אינפלציוני לבין-הקדם

23שעשוי לאפשר לדגום את התהליכים הפיזיקאליים בסקאלות אנרגיה מאוד גבוהות של  
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-23
21

גיגה אלקטרון  

.  הלא ניתנות לאבחון על פני כדור הארץ  ,וולט
 

 



 

 

 

 

 

 

 

 

 

 של םהמחקר נערך בהנחיית

 רנן ברקנא 'פרופניסן יצחקי ו' פרופ

 אוניברסיטת תל אביב, בית הספר לפיזיקה ואסטרונומיה

 



 

 

 

 

 

 

 לצפות בבלתי נצפה,

 החתימה האופיינית של היקום המוקדם

 

  חיבור לשם התואר "דוקטור לפילוסופיה"
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 אנסטסיה פיאלקוב
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