(4-5 qpw 7y Da xnarTa) ni7n 72y 1-4 n'9pv nTIR LU 7'

A X B

0.0003 3 r1 \ _ (2.0001 NDAIT
1 1 o o 1 :(Mayw "1y'wn)

:(nM1wn no7na ny) pinoa

U A’

11 i 11
0003 1 0 29997) ~ \ 0.0003 3

Y B’ 1 AYw

(0
(003 ?><z;><2o‘hm>
(c

U X Y 2 1%

X1 _ 1
29997 ro / \ 1.9998 1

LU pino
void ludcmp(float **a, int n, int *indx, float *d)
Given a matrix a[1..n][1..n], this routine replaces it by the LU decomposition of a
rowwise permutation of itself. a and n are input. a is output, arranged as in equation
(2.3.14) above; indx[1..n] is an output vector that records the row permutation
effected by the partial pivoting; d is output as #1 depending on whether the number
of row interchanges was even or odd, respectively. This routine is used in
combination with lubksb to solve linear equations or invert a matrix.

511 512 613

e
all...nl[l...n] = g1 Boy Pag | AT
a3l Q32 P33

indx[l .. n] "NNIYA NID7NN NX NIY

d—=+1 :NNIY NI9nn ¥ (-1) 2ir=x Ix (+1) 11T 190n n'h DX MY

LU pino

void lubksb(float **a, int n, int *indx, float b[])

Solves the set of n linear equations A-X = B. Here a[1..n][1..n] is input, not as the
matrix A but rather as its LU decomposition, determined by the routine ludcmp.
indx[1..n] is input as the permutation vector returned by ludcmp. b[1..n] is input as the
right-hand side vector B, and returns with the solution vector X. a, n, and indx are not
modified by this routine and can be left in place for successive calls with different
right-hand sides b. This routine takes into account the possibility that b will begin
with many zero elements, so it is efficient for use in matrix inversion.

b[l . n] : B — X :avinnnkbnx Q'7nn

. :¥iIn'vn |9IX
float **a,*b,d;

int n,*indx;

ludcmp(a,n,indx,&d);
lubksb(a,n,indx,b);

ni7a 7y 5-11 n'opw 1'wdy

SVD pino
void svdcmp(float **a, int m, int n, float w[], float **v)
Given a matrix a[1..m][1..n], this routine computes its singular value decomposition,
A =U-W.VT, The matrix U replaces a on output. The diagonal matrix of singular

values W is output as a vector w[1..n]. The matrix V (not the transpose V7) is output
as v[1..n][1..n].

a[l. . m] [1. : n] : A = U :¥inmnxanxg9nn

wll...n|: W = w2, v[l...n][l...n]:V

:7 (b 7¥ "1 T0 DY AWOK) DX AT 'INNI,DIVFA W, - NIX D'OONN ,TX

void svbksb(float **u, float w[], float **v, int m, int n, float b[], float x[])

Solves A-X = B for a vector X, where A is specified by the arrays u[1..m][1..n],
w[1..n], v[1..n][1..n] as returned by svdcmp. m and n are the dimensions of a, and
will be equal for square matrices. b[1..m] is the input right-hand side. x[1..n] is the
output solution vector. No input quantities are destroyed, so the routine may be
called sequentially with different b’s.

