קודם: שקפים 1-4 על הלוח (הדוגמא גם על שקף 4-5)
פירוק LU
$\left.\begin{array}{c}\text { A } \\ \left(\begin{array}{cc}0.0003 & 3 \\ 1 & 1\end{array}\right)\end{array} \begin{array}{c}\mathbf{X} \\ x_{1} \\ x_{2}\end{array}\right)=\left(\begin{array}{c}\mathbf{B} \\ 2.0001 \\ 1\end{array}\right) \begin{gathered}\text { (משיעור שעבר): }\end{gathered}$ הפירוק (עם החלפת השורות):
L U
A'
$\left(\begin{array}{cc}1 & 0 \\ .0003 & 1\end{array}\right) \cdot\left(\begin{array}{cc}1 & 1 \\ 0 & 2.9997\end{array}\right)=\left(\begin{array}{cc}1 & 1 \\ 0.0003 & 3\end{array}\right)$
$\left(\begin{array}{cc}\mathbf{L} \\ 1 & 0 \\ .0003 & 1\end{array}\right) \cdot\left(\begin{array}{c}\mathbf{Y} \\ y_{1} \\ y_{2}\end{array}\right)=\left(\begin{array}{c}\mathbf{B} \\ 1 \\ 2.0001\end{array}\right)$
שלב 1:

שלב 2:
$\left(\begin{array}{cc}1 & 1 \\ 0 & 2.9997\end{array}\right) \cdot\binom{x_{1}}{x_{2}}=\binom{1}{1.9998}$
void ludcmp(float **a, int n , int *indx, float *d)
Given a matrix a[1..n][1..n], this routine replaces it by the $L U$ decomposition of a rowwise permutation of itself. a and \mathbf{n} are input. a is output, arranged as in equation (2.3.14) above; indx[1..n] is an output vector that records the row permutation effected by the partial pivoting; d is output as ± 1 depending on whether the number of row interchanges was even or odd, respectively. This routine is used in combination with lubksb to solve linear equations or invert a matrix.
$a[1 \ldots n][1 \ldots n] \Rightarrow\left(\begin{array}{lll}\beta_{11} & \beta_{12} & \beta_{13} \\ \alpha_{21} & \beta_{22} & \beta_{23} \\ \alpha_{31} & \alpha_{32} & \beta_{33}\end{array}\right) \begin{gathered}\text { מחריף הרצה: a }\end{gathered}$
indx[1...n] שומר את החלפות השורות:
$d= \pm 1$ שומר אם היה מoפר זוגי (1+) או אי-דוגי (1-) של החלפות שורות:
void lubksb(float **a, int n, int *indx, float b[])
Solves the set of n linear equations $A \cdot X=B$. Here $a[1 . . n][1 . . n]$ is input, not as the matrix A but rather as its $L U$ decomposition, determined by the routine ludcmp. indx[1..n] is input as the permutation vector returned by ludcmp. $b[1 . . n]$ is input as the right-hand side vector B, and returns with the solution vector X. a, n, and indx are not modified by this routine and can be left in place for successive calls with different right-hand sides b. This routine takes into account the possibility that b will begin with many zero elements, so it is efficient for use in matrix inversion.

$$
\text { b[1. . .n] : B } \rightarrow \mathrm{X} \text { אחרי הרצה: b } \mathrm{b} \text { אתריף }
$$

```
float **a,*b,d;
int n,*indx;
ludcmp(a,n,indx,&d);
lubksb(a,n,indx,b);
```


SVD פירוק

void svdcmp(float **a, int m, int n, float w[], float **v)
Given a matrix a[1..m][1..n], this routine computes its singular value decomposition, $A=U \cdot W \cdot V^{\top}$. The matrix U replaces a on output. The diagonal matrix of singular values W is output as a vector w[1..n]. The matrix V (not the transpose V^{T}) is output as $\mathrm{v}[1 . . \mathrm{n}][1 . . \mathrm{n}]$.
$a[1 . . . m][1 \ldots n]: A \Rightarrow U \quad$ מחליף את a אחרי הרצה:
$w[1 \ldots n]: \mathrm{W}=\left(\begin{array}{lll}w_{1} & & 0 \\ { }^{2}{ }_{2} & \\ 0 & \ddots & w_{n}\end{array}\right) \quad v[1 \ldots n][1 \ldots n]: V$
אז, מאפסים את ה- w הקטנים, ואחרי זה קוראים (אפשר עם Oדרה של b) ל:
void subksb(float ${ }^{* *} u$, float $w[]$, float ${ }^{* *} v$, int m, int n, float b[], float x[]$)$
Solves $A \cdot X=B$ for a vector X, where A is specified by the arrays $u[1 . . \mathrm{m}][1 . . \mathrm{n}]$, $\mathrm{w}[1 . . \mathrm{n}], \mathrm{v}[1 . \mathrm{n}][1 . . \mathrm{n}]$ as returned by svdemp. m and n are the dimensions of a , and will be equal for square matrices. $\mathrm{b}[1 . . \mathrm{m}]$ is the input right-hand side. $\mathrm{x}[1 . \mathrm{n}]$ is the output solution vector. No input quantities are destroyed, so the routine may be called sequentially with different b's.

