
1

�
������

�
������

� �
����� �

� �
� ������

� �
������ �

������ �
� �

A

=.

� �
����� �

=.

� �
� ������

=.

UL

Y B’

A’

L

X YU

�LU

�
�� � � � �� ������

� � ������ �� � � � �����

X�

X�
� ������

�

X B

����

����

Y�
Y�

X�

X�

����-�� � ��� � � ��-��



2

A;�� � �N=;�� � �N= }
l��

l��

k��

INDX;�� � �N=

�� � � � �(+1)� � ���� �(-1)� � � ��

void ludcmp(float **a, int n, int *indx, float *d)
Given a matrix a[1..n][1..n], this routine replaces it by the LU decomposition of a 
rowwise permutation of itself. a and n are input. a is output, arranged as in equation 
(2.3.14) above; indx[1..n] is an output vector that records the row permutation 
effected by the partial pivoting; d is output as ±1 depending on whether the number 
of row interchanges was even or odd, respectively. This routine is used in 
combination with lubksb to solve linear equations or invert a matrix.

�� � �a�
� � � ���

l��

l��

l��

l��

k��

k��

D � ` �

� � � ��

�LU



3

B;�� � �N= � " x 8 � �b� ��

�LU
void lubksb(float **a, int n, int *indx, float b[])
Solves the set of n linear equations A·X = B. Here a[1..n][1..n] is input, not as the 
matrix A but rather as its LU decomposition, determined by the routine ludcmp. 
indx[1..n] is input as the permutation vector returned by ludcmp. b[1..n] is input as the 
right-hand side vector B, and returns with the solution vector X. a, n, and indx are not 
modified by this routine and can be left in place for successive calls with different 
right-hand sides b. This routine takes into account the possibility that b will begin 
with many zero elements, so it is efficient for use in matrix inversion.

float **a,*b,d;
int n,*indx;
...
ludcmp(a,n,indx,&d);
lubksb(a,n,indx,b);

� ��

����-��� �



4

WN

��� ���wj���� � ��� � � �b����

A;�� � �M=;�� � �N= � ! } 5

7 =

W�
W�
[[

�

�
W;�� � �N= � V;�� � �N=;�� � �N= � 6

void svdcmp(float **a, int m, int n, float w[], float **v)
Given a matrix a[1..m][1..n], this routine computes its singular value decomposition, 
A =U·W·VT. The matrix U replaces a on output. The diagonal matrix of singular 
values W is output as a vector w[1..n]. The matrix V (not the transpose VT ) is output 
as v[1..n][1..n].

� �a� ��

void svbksb(float **u, float w[], float **v, int m, int n, float b[], float x[])
Solves A·X = B for a vector X, where A is specified by the arrays u[1..m][1..n], 
w[1..n],��v[1..n][1..n] as returned by svdcmp. m and n are the dimensions of a, and 
will be equal for�square matrices. b[1..m] is the input right-hand side. x[1..n] is the 
output solution vector.��No input quantities are destroyed, so the routine may be 
called sequentially with different b’s.

�SVD


