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Cosmology 2 Exam           SOLUTION 
 
Semester B 2022/3, Exam A 
 
 
Lecturer: Prof. Rennan Barkana         Date: Feb. 7, 2023 
 
Length: 3 hours          No outside material allowed 
 
Instructions: Answer the first question (required: 60 points) and choose 
2 of the next 3 (20 points each). In your answers, explain each step 
briefly.  
 
Here are various formulas that you may use without explanation if you 
find them helpful (not all are relevant): 
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effective cross-sectional area for collision. Let P be the probability that the particle
has not yet had a collision after distance x. Then the probability P + dP at x+ dx
equals the probability P (of no collision up to x) times the probability 1 − nσcdx
(of also no collision between x and x+ dx), i.e., dP = −Pnσcdx. Since P (0) = 1,

P (x) = e−nσcx . (3.31)

Then the mean free path, the average distance traveled between collisions, is

l ≡ 〈x〉 =
∫ ∞

0
x|dP | = (nσc)

−1 . (3.32)

Note that if the travel direction is random after each collision, then the vector
〈"x〉 = 0. The variance is

〈x2〉 =
∫ ∞

0
x2|dP | = 2l2 . (3.33)

Here the random walk is made up of segments from one collision to the next, and
the total root-mean-square distance after N segments is, given Eq. (3.30),

√

〈|∆"x|2〉 =
√
2N l . (3.34)

3.2 The power spectrum

The power spectrum is the Fourier-space analogue of the pair correlation function.
It plays a prominent role in both theoretical and observational cosmology.

3.2.1 Definition

To begin, we describe the spatial form of the density fluctuations in Fourier space, in

terms of (three-dimensional) Fourier components δ̂
(

"k
)

, where the Fourier transform

and its inverse are:

δ̂
(

"k
)

=

∫

d3x δ("x)e−i"k·"x ; δ("x) =

∫

d3k

(2π)3
δ̂
(

"k
)

ei
"k·"x . (3.35)

We note that the (2π)3 factor is sometimes switched (or split) between these two
equations, and this choice also affects the numerical coefficients in other equations
in this section; thus, care must be taken when comparing results that use different
conventions for this factor within the definitions of the Fourier transform and its
inverse. Here we have introduced the comoving wavevector "k, whose magnitude k
is the comoving wavenumber which is equal to 2π divided by the wavelength. Note

that, from the definition, δ̂
(

−"k
)

= δ̂∗
(

"k
)

if δ("x) is real.

The variance of the various "k-modes is described in terms of the power spectrum

(or power spectral density) P (k). The rough idea is P (k) ∼
〈

∣

∣

∣
δ̂
(

"k
)
∣

∣

∣

2
〉

, but the

precise mathematical definition is:
〈

δ̂
(

"k
)

δ̂∗
(

"k′
)〉

= (2π)3 P (k) δD
(

"k − "k′
)

, (3.36)
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Gaussian random field, as is the case (to high accuracy) for fluctuations generated
by cosmic inflation [160]. The statistical properties of such fields are determined
by P (k), or equivalently ξ(r). In particular, all higher-order cumulants (higher
than order two) vanish. Also, all sets of linear functions or functionals of δ(#x) are
multivariate normal variables. However, this is not the case for non-linear functions
or functionals.

For a Gaussian random field, different #k-modes are statistically independent,

each with a random phase. In the discrete case, Re δ̂
(

#k!l

)

and Im δ̂
(

#k!l

)

are, for each

#k!l , Gaussian variables with zero mean and with variance equal to P
(

#k!l

)

(∆k)3/2.

Alternatively, we can use the magnitude and phase description,

δ̂
(

#k!l

)

=
∣

∣

∣
δ̂
(

#k!l

)
∣

∣

∣
eiφ(

!k!l) . (3.52)

Then 0 ≤ φ
(

#k!l

)

< 2π is uniformly distributed (and the field is said to have “random

phases”), and the magnitude
∣

∣

∣
δ̂
(

#k!l

)
∣

∣

∣
follows a Rayleigh distribution:

p(x) dx = σ−2e−x2/(2σ2)x dx , σ2 = P
(

#k!l

)

(∆k)3 , x ≥ 0 . (3.53)

3.4.2 Window functions

In models of galaxy formation, we are often interested in considering not the raw,
un-smoothed, density field, but the smoothed density field:

δ̄(#x) =

∫

d3x′ W (|#x′ − #x|) δ(#x′) . (3.54)

This expression averages the value of δ over the region near #x, with the weighting
of values at various distances r from #x given by the window function W (r). By
definition, δ̄(#x) is a convolution of δ and W . Since a convolution in real space is
equivalent to a simple multiplication in #k (Fourier) space, we roughly expect

ˆ̄δ ∼ W̃ · δ̂ ,

〈

(

ˆ̄δ
)2
〉

∼ W̃ 2P (k) ,

where W̃ is the Fourier transform of W . The correlation function ξ̄ of the smoothed
density field is then related to the power spectrum via Eq. (3.40), and the variance
is the correlation function at zero spacing. The precise relation is

ξ̄(r) =
1

2π2

∫ ∞

0
k2dk W̃ 2(k)P (k)

sin(kr)

kr
, (3.55)

and then σ2 = ξ̄(0), where we define

W̃ (k) =

∫

d3xW (r)e−i!k·!x . (3.56)

Since W only depends on r, W̃ depends only on the magnitude k. Also note that

W̃ (0) =

∫

d3xW (r) = 1 , (3.57)
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Question 1: Required 
 
In this question, write clear explanations, and try to include simple 
equations or approximate quantitative expressions. There is, however, no 
need for long mathematical derivations or precise numerical coefficients. 
 
Please choose 3 out of 4:  
 
a. What is the accepted explanation of spiral structure? Describe briefly the 
basic physics involved. 
[20 points] 
 
Spiral structure is a density wave pattern in the disk, which does not consist 
of fixed stars within the spiral density peaks. The physics that describes 
this is a self-consistent model in which the spiral density pattern gives rise 
to a gravitational potential perturbation, which in turn changes the orbits of 
stars, and these stellar orbits together must be consistent with the density 
pattern itself.  
 
b. In spherical collapse, explain what the linearly extrapolated perturbation 
at collapse (equal to 1.686) is. How is it defined, and why is it useful?  
[20 points] 
 
The linearly extrapolated perturbation at collapse is the result of the linear 
growth solution to spherical collapse, extrapolated beyond the regime 
where the linear solution is valid. Specially, it is the linearly extrapolated 
value at which the actual, fully non-linear solution, corresponds to collapse 
(i.e., the spherical shell reaches a zero radius). This value is useful for 
approximately predicting the distribution of halos that form given an initial 
perturbation field. The perturbations can be easily linearly extrapolated, 
and then the collapse threshold can be applied in order to predict where 
non-linear collapse will occur. A statistical application of this idea is used 
in the Press-Schechter model. 
 
c. What is matter-radiation equality? Describe its role in the evolution of 
density perturbations.  
[20 points] 
 
Matter-radiation equality is the cosmic moment at which the matter density 
equals the radiation density: 
 



ρ! /ρ"#$%,' = Ω(𝑎)* = 𝜌+/𝜌"#$%,'  = Ω+𝑎), 
and so: 

𝑎 = Ω+/Ω( 
 
This moment is important in the evolution of density perturbations since 
perturbations inside the horizon grow differently before and after equality. 
In the radiation dominated era, there is essentially no growth (logarithmic 
at best), while there is steady growth in the matter dominated era. Thus, 
perturbations that enter the horizon prior to equality grow differently from 
those that enter after equality, which causes a break in the power spectrum 
at a scale corresponding to the size of the horizon at matter-radiation 
equality. 
 
 
d. What is the Jeans mass, and what is the Toomre instability criterion in 
disks? Give a rough estimate for each of them (with a simple formula). 
[20 points] 
 
 
The Jeans mass is the mass of a region for which gravity and pressure are 
balanced. Regions with mass above the Jeans mass can gravitationally 
collapse. To estimate it, we compare the dynamical timescale 1/)𝐺ρ with 
the time 𝐿/𝑐- for a pressure (sound) wave to cross the size 𝐿 of the region. 
Then the mass is (dropping small numerical factors): 

𝐿*ρ = -𝑐-/)𝐺ρ.
*
ρ = -𝑐-/√𝐺.

*
/)ρ 

 
The Toomre instability criterion gives the condition for gravitational 
instability/collapse, for a region within a rotating disk. To estimate it, we 
compare the circular velocity 𝑉. with 𝑐- . Stability means that the circular 
velocity is smaller, so:  

1 < 𝑐-/𝑉.	 
To write this in a more standard form, we use κ ∼ Ω ∼ 𝑉./𝑅 . Also, 

𝑉. ∼ )𝐺𝑀/𝑅 ∼ )𝐺Σ𝑅//𝑅 ∼ √𝐺Σ𝑅 
Putting this together, we get: 

1 < 𝑐-	𝑉./𝑉./ 	 ∼ 𝑐-(R	κ)/(𝐺ΣR	) = 𝑐-	κ/(𝐺Σ) 
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Question 2: The virial theorem and Press-Schechter 
 
a. What is the virial theorem? When is it valid (in rough, general terms)? 
Illustrate it specifically for the Earth orbiting the Sun (assume a circular 
orbit). 
[10 points] 
 
The virial theorem states that the total kinetic energy K equals minus ½ the 
total potential energy U. It is valid for a steady-state, self-gravitating 
system.  
 
For the Earth orbiting the sun, 0!

"

1
= 23

1"
 and therefore: 

K =
1
2
𝑚𝑉./ = −

1
2
?−

𝐺𝑀𝑚
𝑅

@ = −
1
2
U 

 
b. How is the virial theorem used in spherical collapse to relate the virial 
radius of a halo to the radius of maximum expansion during the collapse? 
Explain briefly. 
 [5 points] 
 
At maximum expansion (turnaround), the energy is purely gravitational, so 
the energy (per unit mass) of a shell containing the halo mass M is: 

𝐸 = 𝐾 + 𝑈 = 𝑈 = −
𝐺𝑀
𝑅4

 

By conservation of energy, this is the same as the energy at virialization, 
for which we use the virial theorem: 

𝐸 = 𝐾 + 𝑈 =
1
2
𝑈 = −

1
2
𝐺𝑀
𝑅5

 

Thus, we find that 𝑅5 = 𝑅4/2. 
 
c. In the Press-Schechter model, there is a missing factor of two in the 
derivation, which is simply multiplied by at the end. Explain briefly why 
this factor is missing. 
 [5 points] 
 
In this model, the initial perturbations are linearly extrapolated to later 
times, and regions above the critical collapse threshold are assumed to have 
formed halos. Due to the growth of fluctuations, all positive fluctuations 
eventually satisfy this. Due to the initial Gaussian fluctuations, exactly half 
of the volume has positive fluctuations, hence the missing factor of 2. 



 
A deeper understanding/explanation of this is the cloud-in-cloud problem: 
even a region that is below the threshold can be part of a larger region that 
does collapse into a halo. This can be shown to account for the factor of 2. 
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Question 3: The power spectrum and correlation function 
 
Assume a power-law power spectrum, P(k)µkn , and a density field that 
grows with time in proportion to the growing mode in an Einstein de Sitter 
universe. 
 
In this question you only need to find how things scale. There is no need 
to find normalizations. 
 
a. Find how the root mean square (r.m.s.) fluctuation s in spheres of radius 
R scales with R and with redshift z. 
 [10 points] 
 
We use the formula for correlation function: 

𝜎/ ∼ G 𝑘/𝑑𝑘
6

'
𝑊K /(𝑘𝑅)𝑃(𝑘) 

where k and R are comoving. Now we let 𝑥 = 𝑘𝑅 and get: 
 

𝜎/ ∼ 𝑅)*)7G x/𝑑x
6

'
𝑊K /(x)𝑥7 

And thus: 
 

𝜎 ∼ 𝑅)(*97)// 
For the redshift dependence, note that 𝑃(𝑘) ∼ 𝐷9/ ∼ 𝑎/ ∼ (1 + 𝑧))/ 
where we used the growing mode 𝐷9 in the Einstein de Sitter case. So: 

𝜎 ∼ 𝑅)(*97)///(1 + 𝑧) 
 
b. Find how the correlation function scales with distance r and with redshift 
z.  
 [5 points] 
 
Similarly: 

𝜉(𝑟) ∼ G 𝑘/𝑑𝑘
6

'

sin(𝑘𝑟)
𝑘𝑟

𝑃(𝑘) 

so the answer comes out the same: 
𝜉 ∼ 𝑟)(*97)///(1 + 𝑧) 

 
 
c. Calculate how the typical virial temperature of collapsing halos scales 
with redshift. (The virial temperature is the temperature to which gas is 



heated when it virializes within a dark matter halo. You may use results 
that you remember from class about virialization.) 
 [5 points] 

    
The virial temperature is defined so that the thermal energy is of order the 
kinetic energy, which (by the virial theorem) is of order the potential 
energy. Doing all of this per particle: 
𝑘<𝑇= ∼ 𝜇𝑉./ ∼

23
#
∼ 𝐺𝜌r/ ∼ 𝐺𝜌𝑅//(1 + 𝑧)/ , 

where r is the physical radius, R the comoving radius, and 𝜌	is the physical 
density. Now, the virial density is a constant times the cosmic density, 
which goes as (1 + 𝑧)* (we are in the EdS case, as stated at the beginning 
of this question). So:  

𝑇= ∝ (1 + 𝑧)𝑅/  
 
The typical collapsing halo is that for which 𝜎 is around the linear threshold 
for collapse. Setting 𝜎 ∼ 1 in the answer to part (a) gives: 

𝑅 ∼ (1 + 𝑧))//(*97) 
Thus: 
 

𝑇= ∝ (1 + 𝑧)>)(,/(*97)) = (1 + 𝑧)(7)>)/(*97) 
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Question 4: Gravitational lensing 
 
Assume the thin lens approximation. We will assume a lensing mass that 
consists of two parts (R is the projected radius): 
 

1. A point mass at R=0.  

2. A distribution with projected mass density  as a function 

of R.  
 

a. Find the projected mass within projected radius R, and write down the 
lens equation. 
 [10 points] 
 
The point mass 𝑀?	gives a constant projected mass (at any R>0). The mass 
distribution gives: 
𝑀(𝑅) = 𝐶 ∫ 21' 𝜋𝑅𝑑𝑅 >

1
= 2𝜋𝐶𝑅, where C is a constant. 

The lens equation is then: 

𝛽 = 𝜃 − 𝛼 = 𝜃 −
𝐷@A
𝐷A

𝛾 

where 𝛾 = ,2
."
a3#
1
+ 2𝜋𝐶b and 𝑅 = 𝐷@𝜃. 

We will write the lens equation as: 

𝛽 = 𝜃 −
𝐴
𝜃
− 𝐵	sign(𝜃) 

where A and B are constants. Note that the deflection is always towards 
the center position (R=0), hence the need for the sign (+1 or -1) function 
(This was shown in an example in the class lecture on lensing).  
 
b. Find the positions of all images. Make sure to cover all possible cases.  
[10 points] 
 
We solve: 

0 = 𝜃/ − [𝐵	sign(𝜃) + 𝛽]	𝜃 − 𝐴 
So: 

𝜃 =
1
2
i[𝐵	sign(𝜃) + 𝛽] ± )[𝐵	sign(𝜃) + 𝛽]/ + 4𝐴l 

Since the square root is larger in magnitude than the [𝐵	sign(𝜃) + 𝛽] term, 
one solution is always positive and one is always negative. Thus, there are 
always two solutions, and we can simplify them: 

1( )R
R

S µ



𝜃9 =
1
2
i[𝐵 + 𝛽] + )[𝐵 + 𝛽]/ + 4𝐴l 

𝜃) =
1
2
i[𝛽 − 𝐵] − )[𝛽 − 𝐵]/ + 4𝐴l 

 
There is also one separate case, which is the	𝛽 = 0  (Einstein radius) case. 
In this case there is axial (cylindrical) symmetry, and the image is a full 
ring, of radius: 

𝜃B =
1
2
i𝐵 + )𝐵/ + 4𝐴l 

 
 

 
                                                                                                            


