Computers for Physicists 2" Semester '04

(Subject #8: More about Input and Output)

e Create a file named numbers.dat containing about a dozen real numbers, positive and negative,
in separate lines. Write a word (not a number!) in some of the lines.

e Write, compile and run the following program
#include <stdio.h>

main()
{
char infile[40] = "numbers.dat" ;
char garbage[100] ;
FILE xinfp, *outfp ;
int n ;
float val ;
int rc ;

infp = fopen(infile, "r") ;
outfp = fopen("output.dat", "w")

if (infp == NULL || outfp == NULL) {
fprintf (stderr, "Problem opening file\n") ;
exit (1) ;
}
for (n =1 ; (rc = fscanf(infp, "%f", &val)) != EOF ; nt++)
if (rc == 1) /* A good line */
fprintf (outfp, "%3d \t %+7.3f \n", n, val) ;
else { /* A problematic line */

fprintf (stderr, "Problem at line %d\n", n) ;
fscanf (infp, "%s", garbage) ;
}

fclose(infp) ;
fclose(outfp) ;

e Look at the file output.dat and verify that you understand the above program.

e The type representing a character (“letter”) in Cis char. A string (a “word” or a “line”) is composed
of characters and is not a basic type. There can be string variables (like infile in our program) and
string constants (between double quotes, like "output.dat" in our program).

e The fopen command returns a file pointer, which is of type FILE * . If it fails to open the file, it
returns NULL (which is actually 0). The first argument of fopen is the name of the file (a string),
and its second one is the mode. "r" is read, "w" is write, "a" is append, "r+" is read and write.

e The exit command terminates the execution of the program. It should be given an integer argument,
which is the exit status of the program. Usually, a zero value signals that all is well, while non-zero
values signify various problems.

22

@3 100 3 j

The fscanf command is the file version of scanf. It has an extra first variable (a file pointer) telling
it where to read from. Those functions return the number of variables successfully matched, or
EOF if End Of File is encountered. This allows for reading an unknown number of lines; and for
checking that the lines are in the desired format. In matching the format, white space is ignored.
Each time variables are read successfully, fscanf advances the file pointer past the read text in the
file so that it points at the next part to be read.

The variable n holds the number of lines read. This number is updated by the n++ part in the for
statement.

When a line not containing a number is encountered, scanf does not read it and the file pointer is
not advanced — we still need to get rid of it, and we reread it to the string garbage. As garbage
is really a string, we don’t need to put a & before it in fscanf.

The fprintf command is the file version of printf.

There are three special file pointers (defined in the header file). stdin is the standard input.
fscanf(stdin, ...) is identical to scanf(...). stdout is the standard output. fprintf(stdout, ...) is
identical to printf(...). stderr, the standard error, is usually used to print error messages on the
screen. When the standard output is redirected (e.g., a.out > output.dat), the standard error is
still attached to the screen.

The fclose command should be used when we don’t need the file pointer anymore, although files
are automatically treated properly at the end of the program.

We have used formatted output in our program. Let’s explain the escape sequence %+7.3f we have
used. %f means, of course, the variable is of type float. 7.3 means that at least 7 characters will be
used to represent the variable, and the precision is 3 digits after the decimal point. The + means
that a sign is always printed.

The escape sequence %e prints a float in an exponential notation. The escape sequence %g prints
it in the more natural of the forms %f and %e.

The escape sequences needed to print and read the non-numerical types are

— %c for chars

— %s for strings.

A character constant is given between single quotes. For example, ’a’ is the letter a. Some characters
require a backslash to be represented — for example, the newline character constant is written as
\n’, and ’\t’ is the tab character constant.

There are many more options for clever and nice-looking formatting...

The format in a function like printf is a string. It does not have to be a string constant — if the
same format is used over and again, it is more convenient to put it in a string variable!

Classwork: Computing a weighted average grade. Write a program which reads the
file grades.dat, calculates the average grade, weighted by the number of hours, and prints it
with a precision of two digits after the decimal point. Make sure you allow enough space in
the format even for the average grade 100 (however unreasonable) ...

The file grades.dat contains the grade of a course in the first column and the number of hours
in the second column. For example:

80 3 70 2
60 4 95 3
75 4 85 2

23

