Computers for Physicists 2" Semester '04

[Subject #4: A First Program in C]

The files containing the C programs should be created, and then compiled, linked and run.
To get acquainted with the process, follow the next steps:

1. use xemacs to create the file first.c containing the following program:
#include <stdio.h>

main()

{
/* declaration block */
int i, j ;

/* execution block */

i=5;

printf("Please enter an integer number:\n") ;

scanf ("%d", &j) ;

printf ("At the beginning, i = %d and j = %d\n", i, j) ;

j=i;
i=73;
printf ("At the end, i =7%d and j = %d\n", i, j) ;
}
2. % ls Look at the contents of the directory to see
that the file first.c exists
3. % cat first.c | Look at the contents of the file
4. % gcce first.c | Compile and Link the file

5. If errors are reported during compilation edit the file again and correct the errors.

=

. Look at the contents of the directory again to see that the program a.out was created.

=

% a.out Run the most recently compiled program.
Enter an integer number when asked, and
press Enter.

8. Look at the output produced by the program. What is wrong ?
Correct the program so that the values of ¢ and j would be exchanged.

9. Compile the program again and check that your correction fixed the program.
10. Run again the program with the input coming from a file instead of the keyboard:

e Use XEmacs to create a file named input.dat. In the file write a single line with an integer
number in it. Save the file.

e In the shell, write:
% a.out < input.dat Run the most recently compiled program
with the file input.dat as input.

Computers for Physicists 2" Semester '04

[Subject #5: Types, Variables, Operations and EXpressionsJ

e Each variable has a type. The basic arithmetic types are

— int, for integers

— float, for floating—point real numbers

e Each variable has to be declared first, so that memory is allocated to it, and its type is known. The
declarations are put in a declarations block.

e After the declarations block comes the execution block, where the variables can be used for com-
putations, printing, etc. Every variable must be assigned a value before being used, or else it will
contain garbage. Assignment can be performed also in the declaration.

e The escape sequences used to print and read those types using printf and scanf are

— %d for ints (in decimal notation)
— %f for floats

e Using operations, one can build various expressions from variables and constants. We shall now list
the binary arithmetic operations:

— i+ | Addition

- 1-7 | Subtraction
— 1% j | Multiplication
- i/ | Division

e An operation between two equal types gives a result of the same type. When an operation is
performed between an int and a float, the int is first promoted to a float.

e Division of two ints gives an int result which is the integer part of the ratio.

e When we have an expression including several operations, we must know what is the order in which
the operations are applied. Each operation has a precedence — operations with higher precedence
are carried out before those of lower precedence. When there are several consecutive operations of
the same precedence, we should know whether they associate from left to right or vice versa.

e The precedence and associativity of the binary arithmetic operations are the conventional ones.
The multiplicative operations have higher precedence than the additive ones, and they all associate
from left to right.

e A table of the precedence and associativity of all the operations taught in this page is given in its
end.

e Parentheses can be used to override the normal precedence and associativity.
e There are also two unary sign operators, + and -.

e Explicit casting can be used to convert an expression to a different type. For example, if i is an
int, then (float) i is a float equal to it. If x is a float, then (int) x is an int equal to its integer
part.

e The assignment operator = translates between types exactly as the cast operation.

Computers for Physicists 2" Semester '04

e Write the following program in a file operators.c .
#include <stdio.h>

main()

{
int i =7, j, k ;
int a, b, ¢ ;

a=1+2x3;
=4-5+6;

c =48 *x -i ;

printf ("1 + 2 *
printf("4 - 5 +
printf("+8 * -i

%d \n", a) ;
%d \n", b) ;
%d \n\n", c) ;

I o w
1]

a = (4x3)/2 ;
b = 4x(3/2) ;
c = 4x3/2 ;

printf (" (4*3)/2 = %d \n", a) ;
printf ("4%(3/2) = %d \n", b) ;
printf ("4%3/2 = Jd \n\n", c) ;

j = (int) 99.9 ;
k=-99.9 ;
printf("j = %d, k = %d \n", j ,k) ;

Before running the program, compute all the printed results. Then compile and run the program.

e There are additional assignment operators corresponding to the binary arithmetic operations. For
example, i += 10 is equivalent to i = i + 10.

e All the assignment expressions return the value being assigned. Therefore, the command
i = j = 3 makes sense. The expression j = 3 assigns the value 3 to the variable j, and also returns
the value 3. This value is then assigned to the variable i.

e There are also the increment ++ operator and the decrement -- operator. For example, i-- is
equivalent toi -= 1 (and toi = i - 1). They come both as prefix and as postfix forms. i++, for
example, increments i after its value is used, while ++i increments i before its value is used.

Computers for Physicists 2" Semester '04

e Add to your program a declaration of the following variables:

int jj, kk ;

and add the following lines at the end of your program:

33 = gee s
Kk = ++k ;

printf("j = %d, k = %d, jj = %d, kk = %d \n", j, k, jj ,kk) ;
kk += 33 3

printf ("Now kk = %d, jj = %d\n", kk, jj) ;

Compile and run the program. What happened to each of the variables?

e Precedence and Associativity of Some Operators

H Operators \ Associativity H
++ -- + - (unary) (type) | right to left
x / left to right
+ - (binary) left to right
= += —= %= [= right to left

Operators in a higher row have higher precedence.
Note that unary +, - have higher precedence than the binary forms.

Every operator has a precedence and associativity. Here we listed only the operators taught up to
now.

For example, consider a variable i of type float:

i=3x4/5;

is evaluated as:

i=(3x*4)/5;

which gives 2 (because the numbers are evaluated as intergers), and

i=-5x%3-2;

is evaluated as:

i=((5b)*x3)-2;

which gives -17.

