Homework \#5: Pythagorian triples and Fermat's last theorem

- A Pythagorian triple is a triple (a, b, c) of integers that can form the lengths of a right angle triangle, that is, $a^{2}+b^{2}=c^{2}$. For example, $3^{2}+4^{2}=5^{2}$. We would like to write a program finding such triples.
- Pierre de Fermat claimed in 1637 that for an integer $n>2$ there are no integer triples such that $a^{n}+b^{n}=c^{n}$. This was proven only in 1995. We would like the program to check this too.
- The program will get n as input, and also a maximal value max. It would look at triples such that $1 \leq a, b, c \leq \max$ and check whether they satisfy $a^{n}+b^{n}=c^{n}$. If so, the triple will be printed. The program should also print at the end the number of triples found.
- If a, b, c are interchanged, we get essentially the same triple, so we want our program to check only $a<b<c$. Moreover, when we multiply the three numbers in a triple by the same number, we get another triple which isn't really interesting. For example, $6^{2}+8^{2}=10^{2}$ shouldn't surprise you by now. Therefore, we are interested in a, b only when they are relatively prime, that is, $\operatorname{gcd}(a, b)=1$.
- Write a function int gcd (int m, int n) computing the greatest common divisor of m and n. Use either Euclid's algorithm or the naive way.
- In addition, include in your program the function power from the classwork.
- Write the program, using the functions power and gcd.

