Homework \#3: Numerical Integration

- The simplest way to perform this integration is called the trapezoid method. One divides the x range into small segments Δx and assumes that for each Δx

$$
\begin{equation*}
\int_{x}^{x+\Delta x} f(x) d x \approx \frac{(f(x+\Delta x)+f(x)) \Delta x}{2} \tag{1}
\end{equation*}
$$

$$
\operatorname{Area}(\rrbracket)=0.5 *(\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})+\mathrm{f}(\mathrm{x})) * \Delta \mathrm{x}
$$

The full integral is obtained by summing up all the areas of each Δx. Note, that the edge points have to be treated carefully.

- Write a program that calculates the following integral:

$$
\begin{equation*}
\int_{-2.5}^{2} f(x) d x \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
f(x)=10 x^{2}-x^{3} \tag{3}
\end{equation*}
$$

- Your program should compare the results of the numerical integration using the trapezoid method with the analytical results as obtained by calculating $F=\int_{-2.5}^{2} f(x) d x$. The number of intervals must be large enough so that the results will fall within an accuracy of 10^{-3} from each other.
- General guidelines for submitting C programs:

The final program should contain a reasonable amount of comment lines which explain the program. Try to address the following points:

- Describe the main variables of the program.
- Explain your algorithm (briefly).
- Explain non-trivial C lines which might confuse the reader.

